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ABSTRACT

THE MOD-2 STEENROD ALGEBRA AND ITS APPLICATIONS IN

COMPUTING HOMOTOPY GROUPS OF SPHERES

Yinfeng Lu

Mona Merling

In this master’s thesis, we discuss the Steenrod squares and their various applications.

The Steenrod squares are cohomology operations of type (Z/2, n;Z/2, n+ i) for non-

negative integers i, and they generate a graded algebra under the Adem relations,

which is a much more extensive algebraic structure on cohomology than the ring

structure given by the cup product. We discuss the construction and properties of

the Steenrod squares and the Steenrod algebra they generate, and we present two ap-

plications: a partial solution to the Hopf invariant one problem, and the computation

of (stable) homotopy groups of spheres.
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Chapter 1

Introduction

1.1 Overview

In algebraic topology, we study topological spaces with tools from abstract alge-

bra, and one of our main objectives is to find algebraic invariants that can help us

distinguish and classify topological spaces up to homeomorphism (or more often up

to homotopy equivalence). In a typical master’s program, students learn about three

algebraic invariants.

The first is the fundamental group. Of course, the fundamental group π1 is merely

a special case n = 1 of homotopy groups πn, but it is worth talking about fundamental

groups separately because they are usually the very first algebraic invariant students

learn. Using the fundamental group, we can easily distinguish topological spaces

like RP 2 (real projective plane) and S1 (circle). In particular, π1(RP 2) ∼= Z/2 but
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π1(S
1) ∼= Z. However, the low-dimensional nature of the fundamental group quickly

poses problems when the difference between two topological spaces lives in higher

dimensions. For example, π1(S
2) ∼= π1(S

3) but we know S2 ̸≃ S3.

To remedy this low-dimensional restriction, we then have the homology groups.

Homology groups can detect (a certain type of) difference in all dimensions, and

thus they can easily distinguish S2 from S3. In fact, they can easily distinguish Sn

from Sm whenever n ̸= m. Frequently, we are not satisfied by simply distinguishing

two spaces apart, but we want to know whether the two spaces are related in a

certain way. For example, one may wonder if Sn−1 is a retract of Sn. We can

readily obtain the answer NO using homology groups. Say there is a retraction

Sn r−→ Sn−1, then the identity map on Sn−1 factors through Sn−1 i−→ Sn r−→ Sn−1, where

i is the inclusion. In homology, this induces a factorization of the identity map on

Hn−1(S
n−1): Hn−1(S

n−1)
i∗−→ Hn−1(S

n)
r∗−→ Hn−1(S

n−1). However, Hn−1(S
n−1) ∼= Z

but Hn−1(S
n) = 0, thus such factorization cannot exist.

Taking the dual notions, we obtain the cohomology groups. The contravariant

nature of cohomology gives it an advantage over homology. For an arbitrary space X,

the obvious diagonal map X → X×X induces a map in cohomology: H∗(X×X)→

H∗(X). Using the Künneth theorem, we can naturally define a multiplication on the

cohomology groups, namely the cup product, which turns the cohomology groups into

a graded ring. This is a richer algebraic structure than homology groups, allowing us

to distinguish more spaces apart. For example, T = S1 × S1 and S1 ∨ S1 ∨ S2 have

2



the same homology, but their cohomology ring structures differ. However, the ring

structure is still not rich enough to distinguish spaces like SCP 2 (suspension of CP 2)

and S3 ∨ S5, since the cup product is trivial in both spaces.

In this thesis, we will develop an algebraic structure on cohomology that is signif-

icantly richer than the ring structure afforded by the cup product. We are going to

develop an infinite family of operations on cohomology, and we will see these opera-

tions generate an algebra that is subject to a certain set of relations. The cohomology

is then equipped with a module structure over this algebra, or in other words, this

algebra then acts on cohomology [AM71]. Topological maps need to respect not only

the cup product but also the action of this algebra. We will study these operations and

the algebra they generate in detail, and we will also see how this extensive algebraic

structure can help us compute homotopy groups of spheres.

1.2 Preliminaries

In this section, we state some preliminary concepts and results that will become

useful for developing our topic and performing computations in later chapters. These

are all well-known concepts and results in algebraic topology and can be found in

almost all graduate-level algebraic topology textbooks. Therefore, we shall omit the

proofs for these theorems and refer to [Hat02] whenever needed.

Definition 1.2.1. A space X with only one non-trivial homotopy group πn(X) ∼= G
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is called an Eilenberg-MacLane space K(G, n).

Definition 1.2.2. A space X is said to be n-connected if πi(X) = 0 for all i ≤ n.

Remark 1.2.3. X is path-connected if n = 0 and simply connected if n = 1.

Definition 1.2.4. Given a path-connected space X and a positive integer n, we can

define the Hurewicz homomorphism h : πn(X)→ Hn(X) in the following way: choose

a generator un of Hn(S
n), consider the homotopy class [f ] ∈ πn(X) represented by

some f : Sn → X, then we let h([f ]) = f∗(un), where f∗ : Hn(S
n)→ Hn(X) is induced

by f .

Theorem 1.2.5 (Eilenberg-Zilber Theorem). Let X, Y be any two spaces, then there

is a natural chain-homotopy equivalence

AW : C•(X × Y ) ⇄ C•(X)⊗ C•(Y ) : EZ.

AW is the Alexander-Whitney map, and EZ is the Eilenberg-Zilber map. In partic-

ular, AW ◦ EZ = idC•(X)⊗C•(Y ) and EZ ◦ AW ∼ idC•(X×Y ).

Theorem 1.2.6 (Hurewicz Theorem). Let X be a (n− 1)-connected space. If n = 1,

then the Hurewicz homomorphism h induces an isomorphism

h̃ : π1(X)/[π1(X), π1(X)] −→ H1(X),

where we mod out π1(X) by its commutator subgroup. If n ≥ 2, then h is an isomor-

phism in dimensions 0 < i ≤ n and an epimorphism in dimension i = n+ 1.
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Theorem 1.2.7 (Universal Coefficient Theorem for Cohomology). Let G be an abelian

group, if a chain complex C of free abelian groups has homology groups Hn(C), then

the cohomology groups Hn(C;G) of the cochain complex Hom(Cn, G) are determined

by split exact sequences

0 −→ Ext(Hn−1(C), G) −→ Hn(C;G) −→ Hom(Hn(C), G) −→ 0.

Theorem 1.2.8 (Künneth Theorem). Let R be a ring and let X, Y be CW-complexes.

If the cohomology group Hk(Y ;R) is a finitely generated free R-module for all k, then

the cross product

H∗(X;R)⊗R H
∗(Y ;R) −→ H∗(X × Y ;R)

is an isomorphism.

(As to how this map is defined, we refer to the discussion in [Hat02, Chapter 3,

Section 1].)

Theorem 1.2.9 (Hopf-Whitney Theorem). Let K be a complex of dimension n, and

let Y be a (n− 1)-connected space. Then there is a one-to-one correspondence

[K,Y ]←→ Hn(K; πn(Y )).

1.3 Contents of the Thesis

Chapter 2: We give the general definition of a primary cohomology operation. We

also state a classification theorem that connects cohomology operations to Eilenberg-
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MacLane spaces.

Chapter 3: We restrict our attention to a specific family of cohomology operations

called the Steenrod squares. These operations are defined on mod-2 cohomology, and

we construct them through a series of so-called cup-i products. We also state and

prove eight important properties of the Steenrod squares, many of which will be

frequently used later.

Chapter 4: We apply the Steenrod squares to give a partial solution to the famous

Hopf invariant one problem.

Chapter 5: We show how the Steenrod squares, together with the Adem relations,

generate a graded Z/2-algebra – the Steenrod algebra A. We study the algebraic

structures of A and its linear dual A∗, and we also study the Hopf algebra structure

of A by deriving its comultiplication. We give a set of indecomposable generators for

A as a Z/2-algebra, and we also give two different bases for A as a Z/2-module.

Chapter 6: As two examples, we explicitly compute the integral cohomology of

K(Z, 2) and the (low-dimensional part of the) mod-2 cohomology of K(Z/2, 2) using

the Serre spectral sequence. We then state and prove Serre’s theorem, which gives us

the mod-2 cohomology of K(Z/2, q) for any q ≥ 1.

Chapter 7: We compute the 2-components of the first five stable homotopy groups.

The computations in this chapter will utilize results from Chapters 2, 3, 5, 6.

Appendix: For reference, we compose the computations of the transgressions in

Chapter 7 into compact tabular forms.

6



Chapter 2

Cohomology Operations

In this chapter, we give a brief introduction to the general notion of cohomology

operations. We will not dwell on and go very deep into this general notion, since we

are only interested in a particular family of cohomology operations in the rest of this

thesis. In this and the following chapters, we follow the definitions and notations for

cohomology operations as found in [MT68, Chapter 1].

2.1 Basic Definitions

Definition 2.1.1. A (primary) cohomology operation of type (π, n;G,m) is a fam-

ily of functions θX : Hn(X; π) → Hm(X;G), one for each space X, satisfying the

condition: for any map f : X → Y , the following diagram commutes.
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Hn(Y ; π) Hn(X; π)

Hm(Y ;G) Hm(X;G)

f∗

θY θX

f∗

In the language of category theory, this definition is saying that a cohomology

operation of type (π, n;G,m) is a natural transformation between the cohomology

functors Hn(−; π) and Hm(−;G).

Definition 2.1.2. The specific operation θX at a space X is called the component of

θ at X.

Example 2.1.3. The familiar cup-product square α 7→ α ⌣ α is a cohomology opera-

tion of type (π, n; π, 2n) for any n and π. Note that this operation is in general not a

group homomorphism. In fact, this is only a group homomorphism when 2 = 0 in π.

To see the cup-product square satisfies the naturality condition, recall we have the

property f ∗(α ⌣ β) = f ∗(α)⌣ f ∗(β).

Notation 2.1.4. We denote the set of all cohomology operations of type (π, n;G,m)

by O(π, n;G,m).

For the rest of this chapter, we will assume n ≥ 2. The reason is that when n = 1

the Hurewicz homomorphism fails to be an isomorphism at dimension n− 1 = 0. For

a 0-connected (i.e. path-connected) space X, we have π0(X) = 0 but H0(X) ∼= Z.

Hence π0(X) ̸∼= H0(X). As we will see below, this leads to problems when we try to

apply the Universal Coefficient Theorem for Cohomology. Therefore, we will exclude

this case from our discussion below.
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Suppose X is a (n − 1)-connected space, then by definition πi(X) = 0 for all

i < n. In particular, the Hurewicz theorem gives Hn−1(X) ∼= πn−1(X) ∼= 0. Note this

only works when n ≥ 2. This, together with the Universal Coefficient Theorem for

Cohomology, showsHn(X; π) ∼= Hom(Hn(X), π), because the Ext term is Ext(0, π) =

0. Now if we let π = πn(X), then Hom(Hn(X), π) = Hom(Hn(X), πn(X)) contains

the isomorphism h−1, where h is the Hurewicz homomorphism (in this case, h is an

isomorphism). This leads to the following definition.

Definition 2.1.5. Let X be a (n − 1)-connected space. The fundamental class of

X is the cohomology class ιn ∈ Hn(X; πn(X)) which corresponds to h−1 under the

above isomorphism Hn(X; π) ∼= Hom(Hn(X), π).

Remark 2.1.6. K(π, n) has a fundamental class ιn ∈ Hn(K(π, n); π).

2.2 A Classification Theorem

We will end our short introduction to primary cohomology operations by intro-

ducing a classification theorem.

Theorem 2.2.1. There is a one-to-one correspondence

[X,K(π, n)]←→ Hn(X; π)

[f ]←→ f ∗(ιn).

[X,K(π, n)] denotes Mor(X,K(π, n))/ ∼, where we mod out by homotopy equiva-

lence.

9



The proof requires obstruction theory, which goes beyond the scope of this thesis,

and thus it will be omitted. A detailed proof can be found in [MT68, Chapter 1]. As

two immediate corollaries, we have the following.

Corollary 2.2.2. There is a one-to-one correspondence

[K(π, n), K(π′, n)]←→ Hom(π, π′).

Proof sketch. We have [K(π, n), K(π′, n)] ∼= Hn(K(π, n);π′) ∼= Hom(Hn(K(π, n)), π′)

∼= Hom(πn(K(π, n)), π′) = Hom(π, π′). The first isomorphism follows from Theorem

2.2.1, the second isomorphism follows from the Universal Coefficient Theorem for

Cohomology, and the third isomorphism follows from the Hurewicz theorem.

Corollary 2.2.3. The homotopy type of K(π, n) is determined by π and n. Moreover,

the identity map of π determines (up to homotopy) a canonical homotopy equivalence

between any two models of K(π, n).

Proof. This follows directly from the above corollary and the Whitehead theorem.

Remark 2.2.4. The above result justifies a simplification of notation, namely we can

write Hm(π, n;G) for Hm(K(π, n);G). However, we will keep using the original

notation throughout this thesis. We only make this remark because the authors of

[MT68] use the simplified notation, which may give rise to confusion.

Finally, we state the classification theorem. Let θ ∈ O(π, n;G,m), then ιn ∈

Hn(K(π, n); π) implies θ(ιn) ∈ Hm(K(π, n);G).
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Theorem 2.2.5 (Classification of Cohomology Operations). There is a one-to-one

correspondence

O(π, n;G,m)←→ Hm(K(π, n);G)

θ ←→ θ(ιn).

Proof. Let p : θ 7→ θ(ιn). We will show p has a two-sided inverse.

Let ϕ ∈ Hm(K(π, n);G). Consider some u ∈ Hn(X; π) for some arbitrary space

X. By Theorem 2.2.1 there is a class [f ] ∈ [X,K(π, n)] corresponding to u. Sup-

pose f : X → K(π, n) is a representative of [f ]. We define a cohomology oper-

ation ψ of type (π, n;G,m) by ψ(u) = f ∗(ϕ) ∈ Hm(X;G). This gives us a map

q : Hm(K(π, n);G)→ O(π, n;G,m) defined by q : ϕ 7→ ψ.

We can easily verify that q is a two-sided inverse to p. If X = K(π, n) and [f ]

corresponds to ιn under Theorem 2.2.1, then f is homotopy equivalent to id, thus

ψ(ιn) = f ∗(ϕ) = ϕ. This shows pq = id. Conversely, suppose ϕ = θ(ιn). Then

ψ(u) = f ∗(ϕ) = f ∗(θ(ιn)) = θ(f ∗(ιn)) = θ(u) for any u. Therefore, ψ = θ and thus

qp = id. This finishes the proof.

Remark 2.2.6. The above classification theorem is a direct result of the Yoneda lemma.

We noted before that O(π, n;G,m) is the natural transformation between Hn(−; π)

and Hm(−;G), now we can use Theorem 2.2.1 to finish the argument.

Corollary 2.2.7. There is a one-to-one correspondence

O(π, n;G,m)←→ [K(π, n), K(G,m)]
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Proof. This follows from Theorem 2.2.1 and Theorem 2.2.5 immediately.

We end this chapter with a final note that the classification theorem we proved

above reduces the problem of finding all the cohomology operations of a certain type

to the computation of the cohomology of the Eilenberg-MacLane spaces, which will

be one of our major objectives in this thesis.

Starting from the next chapter, we will focus on a special family of operations -

the Steenrod squares on cohomology with mod 2 coefficients.
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Chapter 3

The Steenrod Squares

In this chapter, we construct and examine a specific family of cohomology opera-

tions called the Steenrod squares. These cohomology operations were first introduced

by Norman Steenrod in 1947 in [Ste47], and they are of type (Z/2, n;Z/2, n + 1)

satisfying a certain set of relations called the Adem relations. There are analogous

operations, called the Steenrod reduced pth powers, for Z/p coefficients with p an

odd prime. However, we will only deal with the Steenrod squares in this thesis.

3.1 Construction of the Steenrod Squares

We will follow the classical path in constructing the Steenrod squares, as done

in [SE62] and [MT68]. We will first construct a series of related operations called

the cup-i products. As the name suggests, the cup-i products can be thought of as a

13



generalization to the familiar cup product from cohomology theory. Our development

will be mainly based on the arguments presented in [MT68], but certain changes are

made in reference to [Med21].

3.1.1 The Cup-i Products

An important piece in the construction is the acyclic carrier theorem. Before we

state the theorem, we need to first make some definitions.

Definition 3.1.1. Let π and G be any groups, and let Z[π] be the group ring of π

over Z. Let K = {Mi, ∂i} be a chain complex of free Z[π]-modules, and let {σα
i } be a

basis for Mi with α ranging over some index set Ji. We say B =
⋃

i {σα
i } is the basis

of K. For some τ, σ ∈ B, we denote the coefficient of σ in ∂τ by [τ : σ].

Let L be another chain complex and suppose G acts on L, and let h : π → G be

a group homomorphism.

Definition 3.1.2. An h-equivariant acyclic carrier C from K to L, relative to the

chosen bases, is a function C : B → {subcomplexes of L} that satisfies:

1. C (σ) is acyclic for all σ ∈ B;

2. if [τ : σ] ̸= 0 then C (σ) is a subcomplex of C (τ);

3. for any x ∈ π and σ ∈ B, we have h(x) · C (σ) is a subcomplex of C (σ).

An h-equivariant chain map f : K → L is said to be carried by C if f(σ) ∈ C (σ) for

all σ ∈ B.
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Topologically, if X is a simplicial complex and K = C(X) is the chain complex

corresponding to X, then a basis element of K corresponds to a simplex in X. Condi-

tion 2 says if σ is a face of τ , then C (σ) is a subcomplex of C (τ). Moreover, f being

carried by C means for every σ ∈ B, the chain f(σ) is carried by the subcomplex

C (σ). We now state the algebraic version of the acyclic carrier theorem.

Theorem 3.1.3 (Acyclic Carrier Theorem). Let C be an acyclic carrier from K to

L. Let K ′ be a subcomplex of K, i.e. K ′ is a free chain complex of Z[π]-modules with

basis a subset of B. Suppose f : K ′ → L is an h-equivariant chain map carried by C ,

then f extends to a C -carried h-equivariant chain map from K to L. Moreover, the

extension is unique up to an h-equivariant chain homotopy carried by C .

Proof. The proof inducts on the dimension and it is not very enlightening. See either

[Mun84, Chapter 1, Section 13] or [MT68, Chapter 2].

The acyclic carrier theorem is important to us because it guarantees the existence

of our construction below.

We start with the infinite-dimensional sphere S∞. We can give S∞ a CW-complex

structure as the following. We start with two 0-cells, call them d0 and Td0. Then we

attach to them two 1-cells with ±(d0 − Td0) as boundaries, call them d1 and Td1,

respectively. Then we attach to them two 2-cells with ±(d1 + Td1) as boundaries,

call them d2 and Td2, respectively. We keep doing this for all dimensions. Hence, in

each dimension n ≥ 0, there are two n-cells. Observe, the boundary map on the CW-

15



complex structure acts by ∂di = di−1 + (−1)iTdi−1. Also, we clearly have ∂T = T∂

and T 2 = 1. Note that T is the flipping map that swaps the two generators in each

dimension. It is straight-forward to see that in even dimensions, the only non-zero

cycles are generated by d2j − Td2j = ∂d2j+1; in odd dimensions, the only non-zero

cycles are generated by d2j−1 + Td2j−1 = ∂d2j. As a consequence, we obtain the

reduced homology groups of S∞: H̃i(S
∞;Z) ∼= Z/Z ∼= 0 for all i ≥ 0. This implies

S∞ is acyclic. We let W be the chain complex of S∞ over Z/2:

· · · −→ Z/2⊕2 −→ Z/2⊕2 −→ Z/2⊕2 −→ 0.

Now, let X be a simplicial complex and K = C•(X) its chain complex. Let W be

the chain complex of S∞ with Z/2 coefficients as before. Let Z/2 (generated by the

flipping map T defined previously) act on the chain complexes W ⊗K and K ⊗K as

the following: T (w⊗k) = (Tw)⊗k for w⊗k ∈ W⊗K, and T (x⊗y) = (−1)|x|·|y|(y⊗x)

for x⊗ y ∈ K ⊗K. It should be obvious that T 2 indeed acts trivially on these chain

complexes. By the Eilenberg-Zilber theorem, there is the Alexander-Whitney map

C•(X × X)
AW−−→ C•(X) ⊗ C•(X), which is a chain-homotopy equivalence. Now we

define a map

C : W ⊗K −→ {subcomplexes of K ⊗K}

di ⊗ σ 7−→ AW (C•(σ × σ)),

where di is a simplex in S∞ and thus a basis element ofW , and σ is some basis element

of K. Observe that di ⊗ σ is a face of dj ⊗ τ only if σ is a face of τ , hence it follows
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C (di ⊗ σ) is a subcomplex of C (dj ⊗ τ). Moreover, σ is some simplex in X and thus

contractible, this then implies σ× σ is also contractible. Hence, C•(σ× σ) is acyclic,

and since AW induces isomorphism between homology groups, we see C (di ⊗ σ) is

acyclic for every basis element di⊗σ. Finally, since T acting on an element in K⊗K

does not change its degree, it follows that TC (di ⊗ σ) ⊆ C (di ⊗ σ) for any di ⊗ σ.

Therefore, we conclude that C is an h-equivariant acyclic carrier, where h is the

identity map. It then follows from the acyclic carrier theorem that there exists an

h-equivariant chain map ∆ : W ⊗K → K ⊗K carried by C .

Let us examine this ∆ in greater details. Consider the restrictions ∆i = ∆|di⊗K .

The first of them, ∆0, can be regarded as a map from K to K⊗K. Indeed, since d0 is

a single element, we have an obvious isomorphism d0⊗K ∼= K. By our construction,

∆0 is carried by the diagonal carrier, and thus we can use it to compute the cup

products in K. Now, let’s look at T∆0. Because ∆ is h-equivariant, we have that

T∆0(σ) = T∆(d0⊗ σ) = ∆T (d0⊗ σ) = ∆(Td0⊗ σ), where the last equality holds by

how we defined T to act on W ⊗ k. Just like ∆0, this T∆0 can also be regarded as a

map K → K⊗K, also carried by the diagonal carrier. By the acyclic carrier theorem,

this implies ∆0 and T∆0 are equivariantly homotopic (i.e. there is an h-equivariant

chain homotopy ∆0 ≃ T∆0 carried by the diagonal carrier). In fact, we shall prove

the following result.
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Proposition 3.1.4. For all i ≥ 1, ∆i and ∆i−1 satisfy the following relation.

∂K⊗K∆i − (−1)i∆i∂K = ∆i−1 + (−1)iT∆i−1. (3.1.1)

Proof. I will omit the subscripts for the boundary maps, as this should raise no

confusion. Recall, ∂di = di−1 + (−1)iTdi−1, and

∂(di ⊗ σ) = ∂di ⊗ σ + (−1)idi ⊗ ∂σ.

Acting ∆ on both sides, the LHS is equal to ∆(∂(di ⊗ σ)) = ∂(∆(di ⊗ σ)) = ∂∆i(σ),

where the first equality holds because ∆ is a chain map. On the other hand, the RHS

is equal to

∆(∂di ⊗ σ) + (−1)i∆(di ⊗ ∂σ) =∆((di−1 + (−1)iTdi−1)⊗ σ) + (−1)i∆i(∂σ)

=∆(di−1 ⊗ σ) + (−1)i∆(Tdi−1 ⊗ σ) + (−1)i∆i∂(σ)

=∆i−1(σ) + (−1)iT∆i−1(σ) + (−1)i∆i∂(σ).

Moving the third term above to the LHS (= ∂∆i(σ)) yields the desired equation.

Taking coefficients in Z/2, Eq.(3.1.1) turns into the form ∆i−1 − T∆i−1 = ∂∆i +

∆i∂. This is saying that each ∆i is a chain homotopy between ∆i−1 and T∆i−1.

Definition 3.1.5. The above construction is called a cup-i construction, and the

maps ∆i are called the cup-i coproducts. The cup-i products, denoted ⌣i, are taken

to be the linear dual of ∆i. That is, given two cochains α and β and a chain c, we

define α ⌣i β to be the map that makes the following diagram commute.
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K K⊗2

Z/2

∆i

α⌣iβ
α⊗β

Specifically, with correct dimensions, we have

⌣i: C
p(X)⊗ Cq(X) −→ Cp+q−i(X)

α⊗ β 7−→ α ⌣i β,

where (α ⌣i β)(c) = (α⊗ β)∆i(c) = (α⊗ β)∆(di ⊗ c), for some c ∈ Cp+q−i(X).

It may now appear that the cup-i products depend on an explicit choice of ∆, but

we will later show that this choice in fact makes no difference. Let us now look at

how the cup-i products interact with the coboundary map.

Proposition 3.1.6 (Coboundary Formula). We have

δ(α ⌣i β) = (−1)iδα ⌣i β + (−1)i+pα ⌣i δβ − (−1)iα ⌣i−1 β − (−1)pqα ⌣i−1 β,

(3.1.2)

with the convention that α ⌣−1 β = 0.

Proof sketch. Let c ∈ Cp+q−i+1(X), then (δ(α ⌣i β))(c) = (α ⌣i β)(∂c) = (α ⊗

β)∆(di⊗ ∂c). Rewriting di⊗ ∂c = (−1)i∂(di⊗ c)− (−1)i∂di⊗ c (recall the boundary

formula for tensor products) and using the equation ∂di = di−1 + (−1)iTdi−1, we can

deduce

(δ(α ⌣i β))(c) = (−1)iδ(α⊗ β)∆(di ⊗ c)− (−1)i(α⊗ β)∆(di−1 ⊗ c)

− (−1)pq(α⊗ β)∆(di−1 ⊗ c).
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Now using the coboundary formula for tensor products to rewrite the first term on

the RHS, we then obtain the desired formula.

3.1.2 The Steenrod Squares

We are now ready to define the Steenrod squares in terms of these cup-i products.

Suppose α ∈ Cp(X) is a cocycle mod 2, i.e. δα = 2γ for some γ ∈ Cp+1(X). Plugging

α ⌣i α into the coboundary formula Eq.(3.1.2), we obtain

δ(α ⌣i α) =(−1)iδα ⌣i α + (−1)i+pα ⌣i δα− (−1)iα ⌣i−1 α− (−1)pqα ⌣i−1 α

=(−1)i2γ ⌣i α + (−1)i+pα ⌣i 2γ − ((−1)i + (−1)pq)α ⌣i α.

However, from the definition of the cup-i product, we can readily observe

(2γ ⌣i α)(c) = (2γ ⊗ α)∆i(c) = 2(γ ⊗ α)∆i(c) = 2(γ ⌣i α)(c).

Hence, we have 2γ ⌣i α = 2(γ ⌣i α), and similarly α ⌣i 2γ = 2(α ⌣i γ). Therefore,

δ(α ⌣i α) =(−1)i2(γ ⌣i α) + (−1)i+p2(α ⌣i γ)− ((−1)i + (−1)pq)α ⌣i α

≡− ((−1)i + (−1)pq)α ⌣i α (mod 2)

≡0 (mod 2),

where the last equivalence holds because (−1)i + (−1)pq is either 0 or ±2. Hence,

α ⌣i α is also a cocycle mod 2. Since “squaring” under the cup-i product preserves

cocycles, we can define the following maps:

Sqi : Z
p(X;Z/2) −→ Z2p−i(X;Z/2)

α 7−→ α ⌣i α.
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Moreover, the projection Sqi : Zp(X;Z/2) → H2p−i(X;Z/2) of cocycles onto

cohomology classes is a group homomorphism. The proof goes as the following.

Suppose c ∈ C2p−i(X) and α, β ∈ Zp(X;Z/2), then we have

Sqi(α + β)(c) =((α + β)⌣i (α + β))(c) = ((α + β)⊗ (α + β))∆(di ⊗ c)

=(α⊗ α + α⊗ β + β ⊗ α + β ⊗ β)∆(di ⊗ c)

=Sqi(α)(c) + Sqi(β)(c) + (α ⌣i β + β ⌣i α)(c)

But observe that using the coboundary formula Eq.(3.1.2), we obtain δ(α ⌣i+1 β) ≡

α ⌣i β+β ⌣i α (mod 2). Therefore, the sum of the cross terms above is a cobound-

ary, hence it vanishes in H2p−i(X;Z/2). We thus get Sqi(α + β) = Sqi(α) + Sqi(β),

as desired.

It should also be noted that Sqi preserves coboundaries. Let α be a coboundary,

i.e. α = δβ for some cochain β, then we have Sqi(α) ≡ δ(β ⌣i α + β ⌣i−1 β) (mod

2). The verification is just a routine computation using the coboundary formula

Eq.(3.1.2), and we omit it. As an immediate consequence, we have the following

result.

Proposition 3.1.7. The map Sqi defined as above passes to a homomorphism:

Sqi : H
p(X;Z/2) −→ H2p−i(X;Z/2).

Proposition 3.1.8. Moreover, let f : X → Y be a continuous map, so that it induces

a homomorphism f ∗ : H i(Y ;Z/2)→ H i(X;Z/2). Then Sqi commutes with f ∗ as in

the following diagram.

21



Hp(Y ;Z/2) H2p−i(Y ;Z/2)

Hp(X;Z/2) H2p−i(X;Z/2)

Sqi

f∗ f∗

Sqi

Proof. It suffices to consider f simplicial. Let α be a p-cochain of Y . Observe that

we have the following formulae:

f ∗(Sqi(a)) :c 7−→ (α⊗ α)∆Y (di ⊗ f(c)) = (α⊗ α)∆Y (1⊗ f)(di ⊗ c)

Sqi(f
∗(α)) :c 7−→ (f ∗(α)⊗ f ∗(α))∆X(di ⊗ c) = (α⊗ α)(f ⊗ f)∆X(di ⊗ c).

Observe now

∆Y (1⊗ f) : W ⊗K W ⊗ L L⊗ L

di ⊗ c di ⊗ f(c) f(c)⊗ f(c),

and (f ⊗ f)∆X : W ⊗K K ⊗K L⊗ L

di ⊗ c c⊗ c f(c)⊗ f(c).

Note c is a (2p − i)-chain in X. Therefore, both ∆Y (1 ⊗ f) and (f ⊗ f)∆X are

carried by the acyclic carrier C : W ⊗ K → L ⊗ L, which is given by C (di ⊗ σ) =

AW (C•(f(σ) × f(σ))). By the acyclic carrier theorem, these two chain maps must

be equivariantly chain homotopic. Hence, we conclude that the images of α under

f ∗Sqi and Sqif
∗ are cohomologous (i.e. they differ by a coboundary), and thus

Sqif
∗ = f ∗Sqi.

As a corollary, this addresses an issue we raised immediately after the definition

of the cup-i products.

Corollary 3.1.9. The operation Sqi is independent of the choice of ∆.
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Proof. Let X = Y in Proposition 3.1.8, and let ∆X , ∆Y be two different choices of

∆. Let f : X → Y be the identity map, which induces isomorphisms on cohomology

groups. Then Proposition 3.1.8 shows SqXi = Sqif
∗ = f ∗Sqi = SqYi .

At the long last, we are finally ready to define the Steenrod squares.

Definition 3.1.10 (Steenrod Squares). Denote by Sqi the homomorphisms

Sqi : Hp(X;Z/2) −→ Hp+i(X;Z/2),

given by Sqi = Sqp−i, where i ranges over 0, 1, . . . , p. If i ̸∈ {0, 1, . . . , p}, we then take

the convention Sqi = 0.

Remark 3.1.11. Sqi raises the cohomology by degree i.

To end this section, let us consider the Steenrod squares for relative cohomology.

Let L be a subcomplex of K. Note that we have the short exact sequence at the

cochain level:

0 −→ C•(K,L)
q∗−−→ C•(K)

j∗−−→ C•(L) −→ 0.

Note that we can assume ∆L = ∆K |W⊗L, because ∆K(di ⊗ σ) ∈ C•(σ ⊗ σ) ⊆ L⊗ L,

for any σ ∈ L. It turns out that j∗(α ⌣i β) = j∗(α) ⌣i j
∗(β) for α, β ∈ Ci(K).

Therefore, we can define the cup-i products as follows. Let α, β ∈ C•(K,L), then by

exactness and the above note, we have

j∗(q∗(α)⌣i q
∗(β)) = j∗q∗(α)⌣i j

∗q∗(β) = 0.
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Hence, by exactness, this implies q∗(α) ⌣i q
∗(β) ∈ ker j∗ = im q∗. But q∗ is in-

jective, thus we can define α ⌣i β to be the unique cochain in C•(K,L) such that

q∗(α ⌣i β) = q∗(α) ⌣i q
∗(β). The coboundary formula we had before easily carries

over. Therefore, all the remarks about cocycle-preserving and coboundary-preserving

properties also carry over, and we have homomorphisms

Sqi : Hp(K,L;Z/2) −→ Hp+i(K,L;Z/2).

It is obvious that we have q∗Sqi = Sqiq∗.

Recall, in the long exact sequence of cohomology, we have the connecting ho-

momorphism δ∗ : Hp(L;Z/2) → Hp+1(K,L;Z/2), which can be obtained through a

diagram chase. We have the following.

Proposition 3.1.12. Sqi commutes with the connecting homomorphism δ∗ as in the

following commutative diagram.

Hp(L;Z/2) Hp+i(L;Z/2)

Hp+1(K,L;Z/2) Hp+i+1(K,L;Z/2)

Sqi

δ∗ δ∗

Sqi

Proof. See [MT68, Chapter 2].

Finally, we remark that the Steenrod squares are also compatible with suspen-

sion. Given a space X, we define the suspension SX of X to be the quotient of X× I

obtained from identifyingX×{0} as a single point andX×{1} as another point. In re-

duced cohomology, S leads to the suspension isomorphism S∗ : H̃p(X)→ H̃p+1(SX)
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through the following composition,

H̃p(X) −→ Hp+1(CX,X) −→ H̃p+1(SX),

where CX is the cone over X. In the above composition, the first isomorphism is

given by the connecting homomorphism, and the second isomorphism is given by

excision. We have the following.

Proposition 3.1.13. Sqi commutes with suspension S∗ as in the following commu-

tative diagram.

H̃p(X) H̃p+i(X)

H̃p+1(SX) H̃p+i+1(SX)

Sqi

S∗ S∗

Sqi

Proof. It follows from the naturality of the Steenrod squares and Proposition 3.1.12.

3.2 Properties of the Steenrod Squares

In this section, we discuss some important properties of the Steenrod squares.

Theorem 3.2.1. The operations Sqi (i ≥ 0) have the following properties:

1. Sqi is a natural homomorphism Hp(K,L;Z/2)→ Hp+i(K,L;Z/2);

2. If i > p, then Sqi(x) = 0 for all x ∈ Hp(K,L;Z/2);

3. Sqi(x) = x2 for all x ∈ H i(K,L;Z/2);

4. Sq0 is the identity homomorphism;
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5. Sq1 is the Bockstein homomorphism δ2;

6. δ∗Sqi = Sqiδ∗, where δ∗ : Hp(L;Z/2)→ Hp+1(K,L;Z/2) is the connecting homo-

morphism;

7. Cartan formula:

Sqi(xy) =
∑
j

Sqj(x)Sqi−j(y);

8. Adem relations: for a < 2b,

SqaSqb =

⌊a/2⌋∑
c=0

b− c− 1

a− 2c

Sqa+b−cSqc,

where the binomial coefficient is taken mod 2.

Remark 3.2.2. These properties can be taken as axioms that completely characterize

the Steenrod squares. See [SE62].

In the previous section, we already showed properties 1 and 6. Note that property

2 is a direct consequence of our definition of the Steenrod squares. Therefore, in this

section, we will prove properties 3, 4, 5, 7, and 8.

Proof of Property 3. Recall by definition, if x is a cochain of dimension i, then

Sqi(x) = Sq0(x). But Sq0(x) = x ⌣0 x is defined by (x ⌣0 x)(c) = (x ⊗ x)(∆0(c)),

where c is some chain of dimension i and ∆0 = ∆|d0⊗K is the restriction of the chain

map ∆ we defined in the previous section. As we noted before, ∆0 is carried by the

diagonal carrier, and thus it is a chain approximation to the diagonal map, which

implies (x⊗ x)(∆0(c)) = (x ⌣ x)(c). Therefore, Sqi(x) = x ⌣ x = x2.
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Next, we will prove properties 4 and 5 together. Before we proceed, we need to

define a Bockstein homomorphism.

Definition 3.2.3. Given a short exact sequence 0 → G → L → K → 0 of abelian

groups, it induces a short exact sequence of chain complexes

0 −→ C•(X;G) −→ C•(X;L) −→ C•(X;K) −→ 0,

which then leads to an associated long exact sequence

· · · −→ Hn(X;G) −→ Hn(X;L) −→ Hn(X;K) −→ Hn+1(X;G) −→ . . .

where X is any space. The connecting homomorphism Hn(X;K) → Hn+1(X;G) is

called a Bockstein homomorphism.

Note that the associated long exact sequence exists for relative cohomology as well.

In property 5, δ2 is the Bockstein homomorphism corresponding to the short exact

sequence 0 → Z/2 → Z/4 → Z/2 → 0. There is another Bockstein homomorphism

that shows up frequently, namely the Bockstein homomorphism β corresponding to

the short exact sequence 0 → Z → Z → Z/2 → 0. This β : Hp(K,L;Z/2) →

Hp+1(K,L;Z) is defined as the following. Take x ∈ Hp(K,L;Z) represented by some

cocycle c, choose an integral cochain c′ that maps to c under reduction mod 2, then

δc = 0 implies δc′ ≡ 0 (mod 2) and thus δc′ is divisible by 2, we let 1
2
δc′ represent βx.

Remark 3.2.4. δ2 is the composition of β and the reduction homomorphism.

The reason we prove properties 4 and 5 together is the following lemma.
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Lemma 3.2.5. The composition δ2Sq
i = 0 if i is odd, and δ2Sq

i = Sqi+1 if i is even.

Proof. Given u ∈ Hp(K,L;Z/2), represent it by a cocycle c′. Let c be an integral

cochain that maps to c′ under reduction mod 2. By definition, Sqi(u) = Sqp−i(u) =

[c ⌣p−i c], where the last term is the class represented by c ⌣p−i c reduced mod 2.

Since c′ is a cocycle, δc′ = 0. It then follows that δc ≡ 0 (mod 2). Hence, δc = 2a

for some integral cochain a ∈ Cp+1(K,L). Let j = p − i, then by the coboundary

formula Eq.(3.1.2),

δ(c ⌣j c) = (−1)j2a ⌣j c+ (−1)ic ⌣j 2a− (−1)jc ⌣j−1 c− (−1)pc ⌣j−1 c.

By the above remark, we then have

δ2(Sq
i(u)) = δ2([c ⌣p−i c]) =

[
1

2
δ(c ⌣j c)

]
=
[
(−1)ja ⌣j c+ (−1)ic ⌣j a− ((−1)j + (−1)p)c ⌣j−1 c

]
≡ [δ(c ⌣j+1 a)] + (s)[c ⌣j−1 c],

where in the last line, the first term is a class of a coboundary and hence it disappears,

and the coefficient s of the second term is 0 if i is odd and 1 if i is even. Now observe

that [c ⌣j−1 c] = Sqp−i−1(u) = Sqi+1(u). Plugging it back to the equation above

yields the desired result.

In the special case where i = 0, this lemma tells us δ2Sq
0 = Sq1. Therefore, it

remains to prove property 4, and property 5 will be a direct consequence of property

4.
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Proof of Properties 4 and 5. We prove property 4 by a sequence of generalization. We

start with the real projective plane RP 2. Let α be the one-dimensional generator of

the cohomology ring of RP 2 with Z/2 coefficients, then δ2Sq
0(α) = Sq1(α) = α2 ̸= 0,

which implies Sq0(α) ̸= 0. Hence, we must have Sq0(α) = α because α is the only

non-zero element in H1(RP 2;Z/2) = Z/2. This shows property 4 holds for RP 2.

Now consider S1. Take a map f : S1 → RP 2 such that f ∗(α) = σ, where α is

the same as above and σ is the generator of the cohomology ring of S1 with Z/2

coefficients. By the naturality condition, we have

Sq0(σ) = Sq0(f ∗(α)) = f ∗(Sq0(α)) = f ∗(α) = σ.

Thus, property 4 holds for S1.

Recall that we can obtain Sn+1 from Sn by suspension, therefore by Proposition

3.1.13 and the above result for S1, we easily see that property 4 holds for all Sn.

Next, let K be a complex of dimension n. By the Hopf-Whitney theorem, we

can map K to Sn so that σ pulls back to any given class in Hn(K;Z/2). It then

follows that property 4 holds for K by commutativity. Now let K be any complex

and n any non-negative integer, then the inclusion j : Kn ↪→ K of the n-skeleton Kn

into K induces a monomorphism j∗ : Hn(K;Z/2) → Hn(Kn;Z/2). Again by natu-

rality, property 4 must hold for any n-dimensional cohomology class in K. Therefore,

property 4 holds for absolute cohomology.

Finally, let (K,L) be a pair and consider the space K ∪L CL, namely the space
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obtained by attaching the cone over L to K at the common subspace L. Then we

have

Hn(K,L) ∼= Hn(K ∪L CL,CL) ∼= H̃n(K ∪L CL),

where the first isomorphism follows from excision and the second follows from the

simple fact that CL is contractible. The composed isomorphismHn(k, L)→ H̃n(K∪L

CL) commutes with Sq0 by naturality, thus property 4 holds for relative cohomology.

We have thus proved property 4, and property 5 follows as an immediate conse-

quence.

Next, let us look at the Cartan formula (property 7). We will first show the Cartan

formula holds when xy is interpreted as the direct product x× y. From this, we will

then deduce that the Cartan formula also holds when xy is interpreted as the cup

product x ⌣ y.

Proof of the Cartan Formula (Property 7). Let W be the chain complex of S∞ as

before. Let K and L be two arbitrary chain complexes. Consider the composition

W ⊗K ⊗ L W ⊗W ⊗K ⊗ L W ⊗K ⊗W ⊗ L

K ⊗K ⊗ L⊗ L

K ⊗ L⊗K ⊗ L,

r⊗id⊗id id⊗τ⊗id

∆K⊗∆L

id⊗τ⊗id

where τ is the flipping map, i.e. τ(a ⊗ b) = b ⊗ a, and the map r : W → W ⊗W is
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defined by

r(di) =
∑
0≤j≤i

(−1)j(i−j)dj ⊗ T jdi−j

r(Tdi) = T (r(di)),

with T and di as defined in the previous section. We shall not be concerned with the

sign, since our result is in Z/2 coefficients. Denote the above composition by ∆K⊗L,

then we can use it to compute Sqi in K ⊗ L.

Let u be a cochain in K, v a cochain in L, a a chain in K, and b a chain in L. Let

p = dimu, q = dim v, and n = p+ q − i. Then we have the following,

Sqi(u× v)(a⊗ b) = ((u⊗ v)⌣n (u⊗ v))(a⊗ b)

= (u⊗ v ⊗ u⊗ v)∆K⊗L(dn ⊗ a⊗ b)

= (u⊗ u⊗ v ⊗ v)
∑

∆K(dj ⊗ a)⊗ T j∆L(dn−j ⊗ b)

=
∑

(u ⌣j u)(a)⊗ (v ⌣n−j v)(b)

=
∑

Sqp−j(u)(a)⊗ Sqq−n+j(v)(b)

=
∑

(Sqp−j(u)× Sqq−n+j(b))(a⊗ b),

where in the third line, T j is either 1 or −1. But since we are considering Z/2

coefficients, T j is in fact always 1. Now recall by definition, Sqi(x) = 0 if i is not
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within the range 0 ≤ i ≤ dimx. Hence,

Sqi(u× v) =
n∑

j′=0

Sqp−j′(u)× Sqq−n+j′(v)

=

p∑
j=i−q

Sqj(u)× Sqi−j(v) ← let j = p− j′

=
i∑

j=0

Sqj(u)× Sqi−j(v).

This proves the Cartan formula in the interpretation of direct product, we will

now see it also holds in the interpretation of cup product. Indeed, if φ is the diagonal

map of K, then for any x, y ∈ H∗(K;Z/2) we have x ⌣ y = φ∗(x× y), and thus

Sqi(x ⌣ y) = Sqiφ∗(x× y)

= φ∗Sqi(x× y)

= φ∗
i∑

j=0

Sqj(x)× Sqi−j(y)

=
∑
j

Sqj(x)⌣ Sqi−j(y).

Hence, we prove the Cartan formula in the interpretation of cup product.

We observe that the Cartan formula shows that the squares Sqi are not ring

homomorphisms. However, we can combine them together to form one.

Definition 3.2.6. We define the map Sq : H∗(K;Z/2)→ H∗(K;Z/2) by

Sq(u) =
∑
i

Sqi(u).

Remark 3.2.7. The sum is always finite by the definition of the squares. Also, Sqi is
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defined on non-homogeneous elements in H∗(K;Z/2) by requiring it to be compatible

with addition.

Proposition 3.2.8. Sq is a ring homomorphism.

Proof. Let u, v ∈ H∗(K;Z/2). By definition, we have

Sq(u)⌣ Sq(v) =
∑
i

Sqi(u)⌣
∑
i

Sqi(v).

Expanding this cup product by linearity, we then have that at each dimension dimu+

dim v + j, there is a term
∑

i Sq
i(u)⌣ Sqj−i(v). Summing over all j, we then have

Sq(u)⌣ Sq(v) =
∑
i

Sqi(u)⌣
∑
i

Sqi(v)

=
∑
j

∑
i

Sqi(u)⌣ Sqj−i(v)

=
∑
j

Sqj(u ⌣ v)

= Sq(u ⌣ v),

where the third equality follows from the Cartan formula, and the last equality follows

from the definition of Sq. Therefore, Sq is a ring homomorphism.

The next proposition is a direct application of the above result.

Proposition 3.2.9. Given some u ∈ H1(K;Z/2), we have Sqi(uj) =

j
i

uj+i.

Proof. Since u is a one-dimensional cohomology class, by properties 2 to 4 we have

Sq(u) = Sq0(u) + Sq1(u) = u+ u2. But Sq is a ring homomorphism, hence Sq(uj) =
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(u+ u2)j = uj
∑

k

j
k

uk. Therefore, Sqi(uj) = uj

j
i

ui =

j
i

uj+i.

Lastly, we will prove the Adem relations (property 8). We will not present the full

proof here, as some part of the proof is elementary but tedious (it involves a lengthy

exercise in combinatorics and the Cartan formula), and some other part requires a

result from Chapter 6 (namely, Serre’s theorem). We start by defining the operators

R : = SqaSqb +

⌊a/2⌋∑
c=0

b− c− 1

a− 2c

Sqa+b−cSqc.

Therefore, to show the Adem relations hold, we need to show R ≡ 0 (mod 2) for

every R.

Lemma 3.2.10. Let y be a fixed cohomology class such that R(y) = 0 for every R,

then R(xy) = 0 for every one-dimensional cohomology class x (and for every R).

Proof. See [MT68, Chapter 3].

Let Kn denote the topological product of n copies of K(Z/2, 1). We know the co-

homology of K(Z/2, 1), since RP∞ is a model of it. Specifically, H∗(K(Z/2, 1);Z/2)

is the polynomial ring Z/2[α] on one generator α, which is a one-dimensional coho-

mology class. This result can be found, for example, in [MT68, Chapter 1]. Therefore,

by the Künneth theorem, H∗(Kn;Z/2) is the polynomial ring Z/2[α1, . . . , αn], where

αi corresponds to the non-trivial one-dimensional cohomology class in the ith copy of

K(Z/2, 1). Recall from basic algebra, Z/2[α1, . . . , αn] has the subring of symmetric
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polynomials Z/2[σ1, . . . , σn], where σi is the elementary symmetric function of degree

i. For example, σ1 = x1 + · · ·+ xn.

Lemma 3.2.11. For every R and for every n ≥ 1, R(σn) = 0.

Proof. Denote the ring unit in H∗(Kn;Z/2) by 1, then by property 2, we have

R(1) = 0 for all R. Then by Lemma 3.2.10, R(αi) = R(1αi) = R(1)R(αi) = 0 for all

i and for all R. By induction on n, we then have R(σn) = 0 for all n ≥ 1 and for all

R, which again follows from Lemma 3.2.10.

Lemma 3.2.12. Assuming Z/2 coefficients, let K be any space, let y be any n-

dimensional cohomology class of K, and let Ra,b be the Adem relation for SqaSqb

with a+ b ≤ n, then R(y) = 0.

Proof sketch. As a consequence of Serre’s theorem (Theorem 6.3.5), the map f : Kn →

K(Z/2, n) whose induced map f ∗ takes ιn to σn is a monomorphism through dimen-

sion 2n. By Lemma 3.2.11, Ra,b(σn) = 0. Also, Ra,b(ιn) has dimension n+a+b ≤ 2n,

thus by the f ∗ above we must have Ra,b(ιn) = 0. Take a map g : K → K(Z/2, n) such

that g∗(ιn) = y, the desired result then follows from naturality.

Lemma 3.2.13. For an arbitrary R, if R(y) = 0 for every n-dimensional cohomology

class y, then R(z) = 0 for every (n− 1)-dimensional cohomology class z.

Proof. Let u be the generator of H1(S1;Z/2), then property 2 implies Sqi(u) = 0

for all i > 1 and property 3 implies Sq1(u) = u2 = 0. Hence, Sqi(u) = 0 for all
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i > 0. By the Cartan formula, R(u× z) = u×R(z). But R(u× z) = 0 by the above

observation and the fact that u × z has dimension n. Hence, u × R(z) = 0, which

implies R(z) = 0.

Proof sketch of the Adem Relations (Property 8). It follows directly from Lemma

3.2.12 and Lemma 3.2.13. We use (downward) induction on dimension: Lemma 3.2.12

shows Ra,b(y) = 0 for all cohomology classes y in any space K with dimension n ≥

a+b. That is, Ra,b = 0 for all dimensions n ≥ a+b. Use downward induction starting

from dimension a + b, Lemma 3.2.13 then shows that Ra,b = 0 for all dimensions

n ≥ 0.

Example 3.2.14. Some Adem relations:

Sq1Sq2n+1 = 0

Sq1Sq2n = Sq2n+1

Sq2Sq4n−2 = Sq4n−1Sq1

Sq2Sq4n−1 = Sq4n+1 + Sq4nSq1

Sq2Sq4n = Sq4n+2 + Sq4n+1Sq1

Sq2Sq4n+1 = Sq4n+2Sq1

Sq3Sq4n+2 = 0

Sq2n−1Sqn = 0
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Chapter 4

Application: Hopf Invariant One

Problem

In this chapter, we present an application of the Steenrod squares.

4.1 The Problem

To begin with, let us first set up the problem.

Assume n ≥ 2 for this section. Take an oriented 2n-cell and consider its boundary

as S2n−1. Then we can map ∂e2n ≃ S2n−1 into an oriented n-sphere Sn through some

map f . Let us attach e2n to Sn under this map f . In other words, we form the cell

complex Sn ∪f e2n by first forming the disjoint union Sn ⨿ e2n and then identifying
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each point in ∂e2n with its image under f . We clearly have the integral cohomology

Hm(Sn ∪f e2n) =


Z m = 0, n, 2n;

0 otherwise.

Denote the generator of the cohomology group in dimension n by σ, and that in

dimension 2n by τ . The elements σ and τ agree with the respective orientations.

Then σ2 = σ ⌣ σ is an integral multiple of τ .

Definition 4.1.1. The Hopf invariant of f is the integerH(f) such that σ2 = H(f)·τ .

Note that the homotopy type of Sn ∪f e2n is determined by the homotopy class of

f , and thus H(f) is also determined by the homotopy class of f . Therefore, instead

of saying the Hopf invariant of some map f , we can say the Hopf invariant of some

homotopy class [f ]. In this way, we have defined a transformation H : π2n−1(S
n)→ Z.

The Hopf invariant one problem asks: for which positive integers n do there exist

maps of Hopf invariant one?

Recall that the cup product is graded commutative, hence if n is odd, we have

σ2 = σ ⌣ σ = (−1)n2

(σ ⌣ σ) = −σ2.

This implies σ2 = 0 and thus H(f) = 0 for all possible f . Therefore, our options are

then restricted to even integers.

Note that if n is 2, 4, or 8, then there does exist a map f : S2n−1 → Sn with Hopf

invariant one. These are known as the Hopf maps. For example, when n = 2, we

have the familiar Hopf map h : S3 → S2.
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4.2 A Partial Solution

Before we present the partial solution to the Hopf invariant one problem obtained

using the Steenrod squares, we first state the full solution. An in-depth proof of the

result can be found in [Ada60], but we will not discuss it. The machinery needed to

understand the proof goes way beyond this thesis.

Theorem 4.2.1 (Non-Existence of Elements of Hopf Invariant One). Unless n =

1, 2, 4, 8, there is no map f : S2n−1 → Sn of Hopf invariant one.

Proof. See [Ada60].

We will prove the following partial solution at the end of this section.

Theorem 4.2.2. Unless n is a power of 2, there is no map f : S2n−1 → Sn of Hopf

invariant one.

Before we prove it, we need to first make some definitions.

Definition 4.2.3. We say Sqi is decomposable if Sqi =
∑

t<i atSq
t, where each at is

a sequence of squaring operations. We say Sqi is indecomposable if no such relation

exists.

Example 4.2.4. Sq1 is indecomposable. Sq2 is indecomposable, since the only way

it can possibly be decomposed is Sq1Sq1, but we know Sq1Sq1 = 0. Sq3 is decom-

posable, since Sq3 = Sq1Sq2 by the Adem relations. Sq6 is decomposable, since

Sq2Sq4 = Sq6 + Sq5Sq1 by the Adem relations.
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We will now prove a condition that determines whether a given Sqi is decompos-

able or not. The following lemma will be useful.

Lemma 4.2.5. Let p be a prime, and let a, b have the p-adic expansions a =
∑m

i=0 aip
i,

b =
∑m

i=0 bip
i, where 0 ≤ ai, bi < p for all i. Thenb

a

 ≡ m∏
i=0

bi
ai

 (mod p).

Proof. Recall that in the polynomial ring Z/p[x], we have (1 + x)p = 1 + xp. Hence,

(1 + x)b = (1 + x)
∑

bip
i
=
∏
(1 + x)bip

i ≡
∏
(1 + xp

i
)bi .

By doing a binomial expansion on (1 + x)b, we see that

b
a

 is the coefficient of

xa in this expansion. Similarly, by doing a binomial expansion on (1 + xp
i
)bi , we see

that

bi
ai

 is the coefficient of xai in this expansion. Using the p-adic expansion of a,

we then have that
∏bi

ai

 is exactly the coefficient of xa (mod p) in
∏
(1+xp

i
)bi .

With the help of the above lemma, we will prove the following theorem.

Theorem 4.2.6. Sqi is indecomposable if and only if i is a power of 2.

Proof. Suppose i is a power of 2. Recall that H∗(K(Z/2, 1);Z/2) is Z/2 in every

dimension n (an ordinary exercise in the universal coefficient theorem). Let α be the

generator of H1(K(Z/2, 1);Z/2), then we have Sq(αi) = (Sqα)i = (α+α2)i ≡ αi+α2i

(mod 2). Hence, Sqt(αi) = 0 unless t = 0 or i. Sq0(αi) = αi and Sqi(αi) = α2i. If
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Sqi is decomposable, then α2i = Sqi(αi) =
∑

t<i atSq
t(αi) = 0, contradicting α2i ̸= 0.

Therefore, Sqi is indecomposable.

Conversely, suppose i = a+ 2k for some 0 < a < 2k. Let b = 2k, then we have by

the Adem relations

SqaSqb =

b− 1

a

Sqa+b +
∑
c>0

b− c− 1

a− 2c

Sqa+b−cSqc.

Since b is a power of 2, b − 1 is the sum of some continue powers of 2. Then by the

above lemma (also recall the Pascal’s triangle mod 2), we have

b− 1

a

 ≡ 1 (mod

2). By the Adem relation above, this implies Sqi = Sqa+b is decomposable.

Finally, let us prove the partial solution to the Hopf invariant one problem, The-

orem 4.2.2.

Proof. By definition, f : S2n−1 → Sn has an odd Hopf invariant if and only if σ2 = τ

in the mod 2 cohomology, where σ and τ are the generators of the cohomology groups

in dimensions n and 2n, respectively. But σ lives in degree n, thus σ2 = Sqn(σ). If n is

not a power of 2, by Theorem 4.2.6 Sqn is decomposable. However, Sqn(σ) = σ2 = τ

is non-zero, whereas Sqi(σ) must be zero for all 0 < i < n for dimensional reasons.

Thus Sqn cannot be decomposable, and we have a contradiction.

Therefore, if n is not a power of 2, then f cannot have an odd Hopf invariant.

Contrapositively, if f has Hopf invariant one, then n must be a power of 2.
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Chapter 5

The Steenrod Algebra

In this chapter, we study the algebraic structure of the Steenrod algebra A, which

is a graded Hopf algebra over Z/2 generated by the Steenrod squares subject to

the Adem relations. We also briefly study its dual. In addition, we give a set of

indecomposable generators for A as a Z/2-algebra, as well as two different bases for

A as a Z/2-module. We assume the basic knowledge of Hopf algebras.

5.1 The Steenrod Algebra A

First, let us recall some basic definitions.

Definition 5.1.1. Let R be a unital commutative ring and M an R-module. We

define the tensor algebra Γ(M) as the following. Let M0 = R, M1 = M , M2 =

M ⊗M , and in general Mn = M⊗n. Then Γ(M) is the graded R-algebra defined
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by Γ(M)k = Mk, where the multiplication is given by the canonical isomorphism

M s ⊗M t ∼= M s+t.

Remark 5.1.2. Clearly, tensor algebras are free and associative but not in general

commutative.

Definition 5.1.3. Let A be an algebra over a unital ring R. A left ideal of A is a

subalgebra I ⊆ A such that ax ∈ I whenever a ∈ A and x ∈ I. Similarly, a right ideal

of A is a subalgebra I ⊆ A such that xa ∈ I whenever a ∈ A and x ∈ I. A two-sided

ideal of A is a subalgebra which is both a left ideal and a right ideal. These notions

coincide when A is commutative.

Now let M be the graded Z/2-module with Mi = Z/2 generated by the symbol

Sqi for every i ≥ 0. We say Sqi has degree i. Note that M is in fact a F2-vector

space. Form the tensor algebra Γ(M) over M . For each pair of integers (a, b) with

0 < a < 2b, let

Ra,b = SqaSqb +

⌊a/2⌋∑
c=0

b− c− 1

a− 2c

Sqa+b−cSqc,

where SqaSqb is understood to be the multiplication in Γ(M). Let R denote the

two-sided ideal of Γ(M) generated by all such Ra,b and 1 + Sq0. In other words, R is

the two-sided ideal generated by the Adem relations.

Definition 5.1.4. The Steenrod Algebra A is the quotient algebra Γ(M)/R.
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Note that A does not inherit a grading from the gradation on Γ(M) because of the

Adem relations (i.e. because A is no longer free), but the Adem relations let A inherit

a grading from M , which is graded by the degrees of the symbols Sqi (degSqi = i).

Elements in A are polynomials in Sqi (i ≥ 0) with coefficients in Z/2 and subject to

the Adem relations.

Once we know what A is algebraically, let us find a set of generators that generate

A as an algebra.

Definition 5.1.5. Let R be a unital commutative ring and A a graded R-algebra.

We can consider R as a graded R-algebra by the convention R0 = R and Ri = 0 for

all i ̸= 0. If we are given an algebra homomorphism ε : A → R, then we say A is

augmented. An augmented R-algebra is connected if ε0 : A0 → R is an isomorphism.

Let A be a connected graded R-algebra, and let Ā denote the kernel of the aug-

mentation ε. Then by the above definition, Ā is the ideal containing all the elements

of positive degree.

Definition 5.1.6. Ā is called the augmentation ideal.

Definition 5.1.7. The ideal of decomposable elements of A is the ideal µ(Ā⊗Ā) ⊆ A,

where µ is the multiplication in A.

Note that the definition of decomposable elements given above is consistent with

Definition 4.2.3. Recall in Chapter 4, we proved that Sqi is decomposable if and only

if i is not a power of 2. As a consequence, we have the following theorem.
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Theorem 5.1.8. {Sq2i}i≥0 generate A as an algebra.

Proof. {Sqi}i≥0 clearly generateA as an algebra, thus {Sqi | i ≥ 0, Sqi indecomposable}

also generate A as an algebra, but this set is exactly {Sq2i}i≥0 by Theorem 4.2.6.

In fact, A is not just a graded Z/2-algebra, it also possesses an additional structure

of a Hopf algebra. Our next goal in this section is to figure out the comultiplication

in A. As a reminder, recall that a Hopf algebra H is a bialgebra (i.e. an algebra that

is also a coalgebra, and these two structures are compatible) with an antipode, which

can be thought of as the convolutional inverse to the identity map on H. We refer to

any introductory text on Hopf algebras for these concepts, for example [Rad12].

Before we proceed, we make some definitions that will come up frequently in our

later discussions.

Definition 5.1.9. Given a sequence I = {i1, . . . , ir} of positive integers, we denote

by SqI the composition Sqi1 . . . Sqir . By convention, if I is empty, then SqI = Sq0.

Definition 5.1.10. The length of any sequence I is the number of terms in the

sequence. The degree d(I) of any sequence I is the sum of the terms, i.e. d(I) =
∑

j ij.

Definition 5.1.11. A sequence I is admissible if ij ≥ 2(ij+1) for every j < r.

Definition 5.1.12. For an admissible sequence I, the excess e(I) is 2i1 − d(I).
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Note that we can rewrite the excess in the following way:

e(I) = 2i1 − d(I)

= i1 − i2 − · · · − ir

= (i1 − 2i2) + (i2 − 2i3) + · · ·+ (ir).

The last expression justifies the name, because it shows e(I) is measuring how far

away I is from not being admissible, but for computational convenience we will use

either of the first two expressions.

Now we come back to the comultiplication in A. Let Γ(M) be the same tensor

algebra as before, with Mi = Z/2 = ⟨Sqi⟩. Define the comultiplication on Γ(M) by

∆: Γ(M) −→ Γ(M)⊗ Γ(M)

Sqi 7−→
∑
j

Sqj ⊗ Sqi−j.

By the definition of a Hopf algebra, we must require that ∆ is an algebra homomor-

phism. That is,

∆(Sqr ⊗ Sqs) = ∆(Sqr)⊗∆(Sqs) =

(∑
a

Sqa ⊗ Sqr−a

)
⊗

(∑
b

Sqb ⊗ Sqs−b

)
.

Theorem 5.1.13. ∆ defined above induces an algebra homomorphism ∆: A → A⊗

A.

Proof sketch. Since A is a quotient of Γ(M), let p : Γ(M) → A be the natural

projection. It suffices to show ker p ⊆ ker∆. Let Kn be the same as in Chapter 3,
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i.e. the topological product of n copies of K(Z/2, 1). Define the following map

w : A −→ H∗(Kn;Z/2)

θ 7−→ θ(σn),

where σn is the elementary symmetric function of degree n. In other words, w is

evaluation on σn. Note that w raises degree by n. It turns out that, by Lemma 5.1.14

and Theorem 5.1.16, w is a monomorphism through degree n. Similarly, we define w′

as evaluation on σ2n. Consider the diagram

Γ(M) A

A⊗A H∗(Kn)⊗H∗(Kn) H∗(Kn ×Kn) H∗(K2n)

∆

p

w×w
w′

w⊗w κ
∼

where cohomology is over Z/2 coefficients. Note that the isomorphism κ comes from

the Künneth theorem. We will show the outer part of the above diagram is commu-

tative. Observe,

w′p(Sqi) = w′(Sqi) = Sqi(σ2n)

= Sqi(σn × σn)

=
∑
j

Sqj(σn)× Sqi−j(σn)

= (w ⊗ w)(∆(Sqi)),

following from the definitions of the various maps and the Cartan formula. This

shows that the outer part of the above diagram commutes on Sqi.

Note that a basis for M⊗r is given by {Sqi1 ⊗ · · · ⊗ Sqir}. Let us denote Sqi1 ⊗

· · ·⊗Sqir by SqI⊗, where the sequence I = {i1, . . . , ir} need not be admissible. Similar
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to the above computation, we have

w′p(SqI⊗) = w′(SqI) = SqI(σ2n)

= Sqi1 . . . Sqir−1

∑
s

Sqs(σn)× Sqir−s(σn)

=
∑

I1+I2=I

SqI1(σn)× SqI2(σn)

= . . .

= κ(w ⊗ w)(∆(SqI⊗)),

where I1 + I2 is interpreted as entry-wise addition. Since this holds for a basis ele-

ment, it holds for all elements. Hence, the outer part of the above diagram is indeed

commutative.

To finish the proof, suppose p(z) = 0 for some z ∈ Γ(M). Then by the commuta-

tivity we just showed, κ(w ⊗ w)(∆(z)) = w′p(z) = 0. However, κ is an isomorphism,

and we can choose n large enough so that w ⊗ w is a monomorphism on elements of

degree deg z. Therefore, ∆(z) = 0.

Lemma 5.1.14. If d(I) ≤ n, then SqI(σn) can be expressed as σn ·QI , where QI =

σi1 . . . σir +
∑

(monomials of lower order).

Proof. A routine verification using the Cartan formula and induction. See [MT68,

Chapter 3].

Remark 5.1.15. Note that the multiplication in A is associative (inherited from the

associativity of Γ(M)) but not commutative (as an easy counter-example, Sq1Sq2 =
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Sq3 ̸= Sq2Sq1). However, the comultiplication in A is both coassociative and cocom-

mutative. We omit the proof, since it is a routine verification on the generators.

So far, we have studied the (Hopf) algebra structure of A, and in Theorem 5.1.8

we gave a set of indecomposable generators for A as a Z/2-algebra. In this last part

of this section, we give a basis for A as a Z/2-module.

Theorem 5.1.16 (Serre-Cartan Basis). The monomials SqI , as I runs through all

admissible sequences, form a basis for A as a Z/2-module.

Proof sketch. Linearly independent: This can either be directly deduced from Serre’s

theorem (Theorem 6.3.5), or deduced by the following argument. Let S denote the

ring of symmetric polynomials Z/2[σ1, . . . , σn], then as I traverses over all admissible

sequences of degree ≤ n, the monomials σi1σi2 . . . σir are linearly independent in

S. But note that S is a subring of H∗(Kn;Z/2) = Z/2[x1, . . . , xn], where Kn is

again the same as in Chapter 3, thus these monomials are also linearly independent

in H∗(Kn;Z/2). It follows from Lemma 5.1.14 that as I runs over all admissible

sequences of degree ≤ n, SqI(σn) are linearly independent. Take a map f : Kn →

K(Z/2, n) such that the induced map f ∗ takes ιn to σn, it then follows that SqI(ιn) are

linearly independent in H∗(K(Z/2, n);Z/2). Therefore, SqI are linearly independent

for I admissible.

Span: We need an ad hoc definition. For any sequence I = {i1, . . . , ir}, we define

the moment of I to be m(I) =
∑

s iss. Now take a non-admissible sequence I and
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consider SqI . Since I is not admissible, there is some pair is, is+1 with is < 2is+1.

Take the right-most such pair and apply the Adem relation, we obtain a sum of

monomials with moment strictly smaller than I. We continue doing this procedure

for the newly obtained sequences. Since the moment function is bounded below, the

procedure eventually terminates and we have expressed the non-admissible sequence

I as a sum of admissible sequences. Hence, {SqI} with I admissible span A.

Example 5.1.17. A7, as a Z/2-module, has the Serre-Cartan basis

{Sq7, Sq6Sq1, Sq5Sq2, Sq4Sq2Sq1}.

5.2 The Dual of the Steenrod Algebra A∗

In this section, we briefly study the dual of the Steenrod algebra. The purpose of

this section is mainly to prepare for the discussion on the Milnor basis.

Let us first make clear what we mean by a dual Hopf algebra. Let k be a field

and A a (connected) Hopf algebra over k. Moreover, we assume A is of finite type for

simplicity. In other words, we assume Ai is finitely generated over k for all i. Under

this setting, we make the following definition.

Definition 5.2.1. The dual Hopf algebra to A, which we denote A∗, is defined by

(A∗)i = (Ai)
∗. That is, the degree-i component of A∗ is dual to the degree-i compo-

nent of A as a vector space over k. The multiplication in A induces the comultiplica-

tion in A∗, and the comultiplication in A induces the multiplication in A∗.
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Specifically, the multiplication µ : A⊗A→ A in A induces the comultiplication in

A∗ in the following way. First, we observe that we can identify (A⊗A)∗ with A∗⊗A∗

by the isomorphism

A∗ ⊗ A∗ −→ (A⊗ A)∗

α⊗ β 7−→ [x⊗ y 7→ α(x)β(y)],

where α, β ∈ A∗ and x, y ∈ A. Now, suppose we have a linear functional γ : A → k,

i.e. γ ∈ A∗. This leads to a linear functional (A ⊗ A)∗ → k through the following

commutative diagram

A⊗ A

A k

µ γ◦µ

γ

Therefore, the composition − ◦ µ induces a map A∗ → (A⊗A)∗. Further composing

it with the inverse of the above isomorphism gives a map A∗ → A∗ ⊗ A∗, which is

exactly the comultiplication in A∗ we want. In a similar way, composition with the

comultiplication map in A leads to the multiplication map in A∗.

Remark 5.2.2. A∗ defined as above is a Hopf algebra. Moreover, the multiplication

in A∗ is associative (resp. commutative) if and only if the comultiplication in A is

coassociative (resp. cocommutative). Similarly, the comultiplication in A∗ is coas-

sociative (resp. cocommutative) if and only if the multiplication in A is associative

(resp. commutative).

Recall, at the end of Section 5.1, we remarked thatA is associative, non-commutative,

coassociative, and cocommutative. Therefore, by the above fact, A∗ is associative,
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commutative, coassociative, and non-cocommutative. In the rest of this section, we

will find out the generators for A∗ as an algebra, and give another basis for A as a

Z/2-module.

We start by making some definitions. Let R be the set

R =
{
{ir}r∈N∗ | ir ∈ N ∀r and #(ir ̸= 0) <∞

}
.

In words,R consists of all infinite sequences I = {i1, i2, i3, . . .} of non-negative integers

with only finitely many non-zero entries.

Definition 5.2.3. A sequence I ∈ R is said to be admissible if its head is admissible

in our previously defined sense, followed by all zeros. Precisely, I ∈ R is admissible

if it is of the following form

I =

 i1, i2, . . . , ir︸ ︷︷ ︸
admissible as Def. 5.1.11

, 0, 0, . . .

 .

Definition 5.2.4. We denote J : = {I ∈ R | I admissible}. That is, J is the subset

of R consisting of all admissible sequences in R.

Next, we define a special family of admissible sequences for notational simplicity.

Definition 5.2.5. For each integer k ≥ 0, we let Ik be the admissible sequence{
2k−1, . . . , 2, 1, 0, . . .

}
. We let I0 denote the zero sequence.

An important observation: let x be the generator of H1(K(Z/2, 1);Z/2), then

SqI(x) = x2
k
if I = Ik, and SqI(x) = 0 for any other admissible sequence. We can
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verify this fact in the following way. Given an admissible sequence, call the right-

most non-zero entry the first entry, the second right-most non-zero entry the second

entry, and so on. If an admissible sequence I is not of the form Ik for some k ≥ 0,

then there must be some nth entry whose value is greater than 2n−1 (it cannot be

smaller than 2n−1, otherwise I will not be admissible), then it follows from property

2 of Theorem 3.2.1 that SqI(x) = 0. The fact that SqI
k
(x) = x2

k
is trivial to verify.

As a consequence, we have the more general observation: for any non-zero sequence

I (admissible or not), SqI(x) = 0 unless I is obtained from some Ik by inserting (a

finite number of) zeros.

Definition 5.2.6. For each i ≥ 0, let ξi be the element of A∗
2i−1 characterized by

ξi(θ)(x
2i) = θ(x) ∈ H2i(K(Z/2, 1);Z/2) for all θ ∈ A2i−1. ξ0 is the unit of A∗. In

addition, we will adopt the conventional notation ⟨ξi, θ⟩ for ξi(θ).

Proposition 5.2.7. Let I be an admissible sequence. For k ≥ 1,
〈
ξk, Sq

I
〉
= 1 if

I = Ik. Otherwise,
〈
ξk, Sq

I
〉
= 0. Further, for an arbitrary sequence I,

〈
ξk, Sq

I
〉
= 0

unless I is obtained from Ik by inserting (finitely many) zeros.

Proof. This follows immediately from our observation above.

We define a map γ : J→ R by

γ : {i1, . . . , ik, 0, . . .} 7−→ {i1 − 2i2, i2 − 2i3, . . . , ik, 0, . . .} .

Observe that although J is a proper subset of R, γ is in fact a bijection. Indeed, we
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can explicitly give the inverse of γ:

γ−1 : {r1, r2, . . . , rk, 0, . . .} 7−→

{
k∑

i=1

2i−1ri,

k∑
i=2

2i−2ri,

k∑
i=3

2i−3ri, . . . , rk, 0, . . .

}
.

Moreover, for each R = {r1, r2, . . .} ∈ R, we define ξR ∈ A∗ by ξR =
∏∞

i=1(ξi)
ri . By

the definition of γ, we observe that for some I ∈ J, the degree of SqI is the same as

the degree of ξγ(I). We give a total order to the sequences in J lexicographically from

the right. For example,

{11, 5, 2, 0, . . .} > {8, 3, 1, 0, . . .} > {9, 4, 0, . . .} > {8, 2, 0, . . .}.

Theorem 5.2.8. For two admissible sequences I, J ∈ J (assuming J ≥ I),
〈
ξγ(J), SqI

〉
=

0 if I < J ,
〈
ξγ(J), SqI

〉
= 1 if I = J .

Proof sketch. The proof proceeds by a downward induction. Let J = {a1, . . . , ak, 0, . . .}

and I = {b1, . . . , bk, 0, . . .}. Since we assume J ≥ I, there is ak ≥ bk. Let

J ′ =
{
a1 − 2k−1, a2 − 2k−2, . . . , ak − 1, 0, . . .

}
.

By our definition above,

ξγ(J) =
k−1∏
i=1

(ξi)
ai−2ai+1 · ξakk =

(
k−1∏
i=1

(ξi)
ai−2ai+1 · ξak−1

k

)
· ξk = ξγ(J

′)ξk.

Therefore, we have

〈
ξγ(J), SqI

〉
=
〈
ξγ(J)ξk, Sq

I
〉

=
〈
∆∗(ξγ(J

′) ⊗ ξk), SqI
〉

=
〈
ξγ(J

′) ⊗ ξk,∆(SqI)
〉
,
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where ∆ is the comultiplication in A, and ∆∗ is the multiplication in A∗ that ∆

induces. Recall we explicitly derived ∆ in Section 5.1, hence

〈
ξγ(J), SqI

〉
=
〈
ξγ(J

′) ⊗ ξk,
∑

SqI1 ⊗ SqI2
〉

=
∑〈

ξγ(J
′), SqI1

〉 〈
ξk, Sq

I2
〉

by linearity, where the sum is over sequences I1, I2 such that I1 + I2 = I.

If bk = 0, the kth entry, and all entries after it, of I2 are 0. It follows from

Proposition 5.2.7 that
〈
ξk, Sq

I2
〉
= 0. If bk ̸= 0, then the only non-zero term in the

above sum is at I2 = Ik. Consequently,
〈
ξγ(J), SqI

〉
=
〈
ξγ(J

′), SqI−Ik
〉
. Inductively

reducing k yields the desired result.

Corollary 5.2.9. As an algebra, A∗ is the polynomial ring over Z/2 generated by

{ξi}i≥1.

Proof sketch. Notice that the statement of the above theorem is identical to the defi-

nition of a dual basis in linear algebra, thus the above theorem shows
{
ξγ(J) | J ∈ J

}
form a basis for A∗ (as a vector space). But since γ is a bijection between J and R, as

J runs through J, ξγ(J) runs through all the monomials in ξi. However, a polynomial

ring is exactly a ring where the monomials in the generators form a basis as a vector

space. Therefore, A∗ is a Z/2-polynomial ring with generators {ξi}i≥1.

We noted above that
{
ξγ(J) | J ∈ J

}
form a vector-space basis for A∗. Since γ is

a bijection, this implies
{
ξR | R ∈ R

}
form a basis for A∗. From this, we can define

another basis for A as a module.
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Definition 5.2.10. The dual basis of
{
ξR | R ∈ R

}
, whose elements we denote{

SqR | R ∈ R
}
, is called the Milnor basis for A as a Z/2-module.

Remark 5.2.11. By definition of the dual basis,
〈
ξR, SqR

′〉
= 1 if R = R′, and〈

ξR, SqR
′〉

= 0 if R ̸= R′.

We note that the Milnor basis is completely different from the Serre-Cartan basis

we introduced in Section 5.1, albeit they have similar notations. For example, the

element Sq{2,1,0,...} in the Milnor basis is different from the element Sq2Sq1 in the

Serre-Cartan basis, although we tend to use the abbreviated notation Sq2,1 for both

of them. However, we do have the coincidence Sq{i,0,...} = Sqi, see [MT68, Chapter 6].
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Chapter 6

Cohomology of Eilenberg-MacLane

Spaces

The computational part of this thesis starts from this chapter. In this chapter,

we try to compute the cohomology of two Eilenberg-MacLane spaces. Specifically, we

compute the integral cohomology of K(Z, 2) and the mod-2 cohomology of K(Z/2, 2).

These computations not only serve as a demonstration of the Serre spectral sequence,

but also lead to concepts and results that will become important in our later com-

putations. In particular, we obtain the ring structures of H∗(K(Z/2, q);Z/2) and

H∗(K(Z, q);Z/2) for all positive integers q. We assume the basic knowledge of spec-

tral sequences.
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6.1 Fibrations

We start with some basic definitions.

Definition 6.1.1. A map p : E → B is said to have the homotopy lifting property

with respect to a space X if, given a homotopy G : X × I → B and a map g : X → E

lifting G|X×{0}, i.e. G|X×{0} = p ◦ g, there exists a (not necessarily unique) homotopy

G̃ : X × I → E lifting G with g = G̃|X×{0}.

The above condition is depicted by the following commutative diagram.

X × {0} E

X × I B

g

i p

G

G̃

Definition 6.1.2. A Hurewicz fibration is a map p : E → B satisfying the homotopy

lifting property for all spaces X.

Definition 6.1.3. A Serre fibration is a map p : E → B satisfying the homotopy

lifting property for all CW-complexes X.

Definition 6.1.4. Given a fibration p : E → B, the space B is called base space and

the space E is called total space. The fiber over b ∈ B is the subspace Fb = p−1(b) ⊆

E. Note that for any two points b and b′ in B, Fb and Fb′ are in fact homeomorphic.

Therefore, given a base point b0 ∈ B, we call Fb0 the fiber space.

In this thesis, when we say a fibration, we always mean a Serre fibration. We

denote a fibration by F → E
p−→ B.
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A particularly useful type of fibration for our computations is the loop-path fi-

bration. Given a pointed space (X, x0), the loop space ΩX over X is the space of

pointed maps Map∗(S
1, X), and the path space PX over X is the space of pointed

maps Map∗(I,X). Of course, ΩX and PX are equipped with the compact-open

topology. Note that the path space PX is contractible.

Definition 6.1.5. Given a pointed space X, the loop-path fibration is the fibration

ΩX → PX
ev1−−→ X, where ev1 evaluates a path at the non-base-point end.

The loop-path fibration plays out nicely in the Serre spectral sequence (which will

be introduced in the next section). Assuming π1(X) acts trivially on higher homotopy

groups, we have the (cohomology) Serre spectral sequence

Ep,q
2 = Hp(X;Hq(ΩX)) =⇒ Hp+q(PX),

but PX is contractible, thus Hp+q(PX) = 0 unless p = q = 0. Therefore, everything

in the Serre spectral sequence must die except for the copy of coefficients at the (0, 0)

spot.

Another useful type of fibration is the pullback fibration (sometimes also called the

induced fibration), see [Hat02, Chapter 4] or [MT68, Chapter 11]. Given a fibration

F → E
p−→ B and a map f : X → B for some space X, we define the pullback space

f ∗(E) to be

f ∗(E) = {(x, e) ∈ X × E | f(x) = p(e)} .
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Let πX : f ∗(E) → X and πE : f ∗(E) → E be the projections of f ∗(E) to X and E,

respectively. Then the pullback fibration F → f ∗(E)
πX−→ X fits into the following

commutative diagram.

F F

f ∗(E) E

X B

πE

πX p

f

Finally, recall that given a pointed space (X, x0), the reduced suspension ΣX of

X is the quotient space

ΣX = (X × I)/(X × {0} ∪X × {1} ∪ {x0} × I).

In the category of pointed spaces, the reduced suspension functor is left adjoint

to the loop space functor. That is, we have a natural isomorphism

Map∗(ΣX, Y ) ∼= Map∗(X,ΩY ),

where X and Y are pointed spaces, and Map∗ means continuous maps that preserve

base points.

Using this adjunction, we have that for any pointed space X,

πn(ΩX) = [Sn,ΩX] ∼= [ΣSn, X] = [Sn+1, X] = πn+1(X).

It is then obvious that for an Eilenberg-MacLane space K(G, n), we have

ΩK(G, n) ∼= K(G, n− 1).
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6.2 Two Computational Examples

In this section, we will try to explicitly compute the cohomologies H∗(K(Z, 2);Z)

and H∗(K(Z/2, 2);Z/2), using the loop-path fibration and the Serre spectral se-

quence.

The following result is due to Jean-Pierre Serre. A proof can be found in [Hat04].

Theorem 6.2.1 ((cohomology) Serre Spectral Sequence). Let F → E
p−→ B be a

fibration, suppose B and F are path-connected. The following holds

1. The cochain complex C•(E) admits a certain filtration, leading to a first-quadrant

spectral sequence.

2. In the resulting spectral sequence {Er, dr}, the bidegree of dr is (r, 1− r).

3. Ep,q
1 = Cp(B)⊗Hq(F ).

4. Ep,q
2 = Hp(B;H q(F )), where H q(F ) denotes the local coefficients. If B is simply

connected, then Ep,q
2 = Hp(B;Hq(F )).

5. The spectral sequence converges to H∗(E). We often denote this convergence by

Ep,q
2 ⇒ Hp+q(E).

We remark that in our computations, the base spaces are always simply connected,

hence we do not need to deal with local coefficients. In addition, if the underlying

coefficient group is a commutative ring (in our case, it is always either Z or Z/2, so

this condition applies), then the Künneth theorem implies

Ep,q
2 = Hp(B;Hq(F ;R)) = Hp(B;R)⊗Hq(F ;R),
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where R is the coefficient ring.

Recall that given a fibration F
i−→ E

p−→ B, we have a long exact sequence in

homotopy (see, for example, [Hat02]):

· · · → πn+1(B)→ πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ . . . .

Although a fibration does not lead to a long exact sequence in (co)homology, we do

have the following useful result due to Serre. The theorem and definition below have

analogous statements in homology, but we will only be interested in the cohomology

version.

Theorem 6.2.2 (Serre’s Exact Sequence in Cohomology). If B is (p− 1)-connected

and F is (q−1)-connected, then there is an exact sequence that terminates as follows:

· · · → Hp+q−2(F )
τ−→ Hp+q−1(B)

p∗−→ Hp+q−1(E)
i∗−→ Hp+q−1(F ).

Proof. See [MT68, Chapter 8].

Notice that in the above exact sequence, we denoted the connecting homomor-

phism by τ . This map will be important in our computations.

Definition 6.2.3. The map τ = dn : E
0,n−1
n → En,0

n is called the transgression. We

say x ∈ Hn−1(F ) is transgressive if τ(x) is defined (or equivalently, if di(x) = 0 for

all i < n).

The following result plays a crucial role in our computations. It goes by the slogan

“transgression commutes with the squares”.
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Proposition 6.2.4. If x is transgressive, then so is Sqi(x). Moreover, if y ∈ τ(x),

then Sqi(y) ∈ τ(Sqi(x)).

Proof sketch. It is shown in [Hat04] that τ(x) contains y if and only if δ(x) = p∗(y),

where δ is the coboundary map. Therefore, y ∈ τ(x) implies p∗(y) = δ(x), and hence

Sqi(p∗(y)) = Sqi(δ(x)). It follows from naturality that p∗(Sqi(y)) = δ(Sqi(x)), which

then implies Sqi(y) ∈ τ(Sqi(x)).

6.2.1 H∗(K(Z, 2);Z)

Recall that S1 is a model of K(Z, 1), thus the cohomology of K(Z, 1) is completely

known. Specifically,

Hn(K(Z, 1);Z) =


Z n = 0, 1;

0 otherwise.

Proposition 6.2.5. H∗(K(Z, 2);Z) is the polynomial ring Z[ι2], where ι2 is of di-

mension 2. That is, ιn2 generates H2n(K(Z, 2);Z).

Proof. Consider the loop-path fibration

ΩK(Z, 2) ∼= K(Z, 1) PK(Z, 2)

K(Z, 2)

and consider the (cohomology) Serre spectral sequence with Z coefficients. On the

p-axis, we have the cohomology of the base space H∗(K(Z, 2);Z). On the q-axis,
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we have the cohomology of the fiber space H∗(K(Z, 1);Z). The spectral sequence

converges to the cohomology of the total space PK(Z, 2). But we know the path

space PK(Z, 2) is contractible, thus Ep,q
∞ = 0 unless p = q = 0. Therefore, we do not

need to worry about the group Z at (p, q) = (0, 0) on the E2-page, as it will persist to

the E∞-page. However, we must eventually eliminate all the other non-zero groups

on the E2-page.

Since the cohomology of the fiber space K(Z, 1) is zero above dimension 1, it

follows that E0,q
2 = 0 for all q > 1, and thus Ep,q

2 = 0 for all p ≥ 0 and q > 1.

As a consequence, the only differential that can be non-zero is d2, since all higher

differentials dr (r ≥ 3) will either map from zero or map to zero.

So far, we have figured out E0,0
2
∼= E0,1

2 = Z, and Ep,q
2 = 0 for all p ≥ 0 and

q > 1. Consider the (1, 0) spot on the E2-page, since the base space K(Z, 2) is simply

connected, we must have E1,0
2 = H1(K(Z, 2);Z) = 0. As a consequence, E1,1

2 = 0.

Now consider the (2, 0) spot on the E2-page. This is the only spot on all pages

that E0,1
2 = Z can map to, as we noted d2 is the only possible non-zero differential.

Therefore, we must have a copy of Z at the (2, 0) spot on the E2-page to eliminate

the group Z at the (0, 1) spot (i.e. to make d2 exact at E0,1
2 ). On the other hand,

we cannot have more than a copy of Z at the (2, 0) spot, since otherwise d2 will

not be exact at E2,0
2 and the non-zero quotient will persist to the E∞-page. Hence,

d2 : E
0,1
2 → E2,0

2 is an isomorphism, and it must take generator to generator. Denote

the generator of E0,1
2 = Z by ι1, then we let ι2 : = d2(ι1) generate E

2,0
2 = Z. By the
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Serre spectral sequence, it then follows that E2,1
2 = Z⊗Z ∼= Z is generated by ι1⊗ ι2.

Next, consider the (3, 0) spot on the E2-page. Since no non-zero group maps to

this spot and this spot maps to no non-zero group, we must have E3,0
2 = 0. As a

consequence, E3,1
2 = 0. Next, consider the (4, 0) spot on the E2-page. Similar to

the (2, 0) spot, this is the only spot on all pages that E2,1
2 = Z can map to, and

thus we must have a copy of Z at this spot to eliminate E2,1
2 . Also, we cannot have

more than a copy of Z for the same reason as above. Therefore, E4,0
2 = Z. Again,

d2 : E
2,1
2 → E4,0

2 is an isomorphism, and thus d2(ι1 ⊗ ι2) is the generator of E4,0
2 . But

by the Leibniz rule, we have

d2(ι1 ⊗ ι2) = d2(ι1)⊗ ι2 + ι1 ⊗ d2(ι2)

= ι2 ⊗ ι2,

where d2(ι2) = 0 because d2 maps into the fourth quadrant from E2,0
2 . Hence, ι22

generates E4,0
2 = H4(K(Z, 2);Z).

The above computation is illustrated in the spectral sequence figure below.

0 1 2 3 4 5 6

0

1 ι1

ι2

ι1 ⊗ ι2

ι22 ι32

Continuing with this computation, we obtain the integral cohomology of K(Z, 2):

Hn(K(Z, 2);Z) =


Z =

〈
ι
n/2
2

〉
n even;

0 n odd.
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This finishes the proof.

6.2.2 H∗(K(Z/2, 2);Z/2)

Now we turn to a much more complicated computation. The strategy does not

change: we start with a loop-path fibration, consider its Serre spectral sequence, and

eliminate unwanted groups.

Consider the loop-path fibration

ΩK(Z/2, 2) ∼= K(Z/2, 1) PK(Z/2, 2)

K(Z/2, 2)

and consider the (cohomology) Serre spectral sequence with Z/2 coefficients. Again,

we have H∗(K(Z/2, 2);Z/2) on the p-axis, and H∗(K(Z/2, 1);Z/2) on the q-axis.

The total space is contractible, thus Ep,q
∞ = 0 unless p = q = 0. Therefore, everything

except for the group Z/2 at the (0, 0) spot should be eventually eliminated.

Recall in Chapter 3 we mentioned that the cohomology of the fiber spaceK(Z/2, 1)

is the polynomial ring Z/2[α] on one generator α of dimension 1. Since we know the

cohomology of the fiber space and that of the total space, we will start to compute

the mod 2 cohomology of the base space K(Z/2, 2).

Since the base space K(Z/2, 2) is 1-connected, by the Hurewicz theorem we have

H1(K(Z/2, 2);Z/2) = 0. It follows that E1,q
k = 0 for all q ≥ 0 and k ≥ 2. Consider

the copy of Z/2 at the (0, 1) spot on the E2-page, it must be eliminated, but there is
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no non-zero group that maps to it and the only possible non-zero differential mapping

out of it is d2. Hence, we must have a copy of Z/2 at the (2, 0) spot on the E2-page to

make 0→ E0,1
2

d2−→ E2,0
2 → 0 exact. Since this d2 is an isomorphism, it maps generator

to generator, thus we let ι2 = d2(α) be the generator of E
2,0
2 = H2(K(Z/2, 2);Z/2) =

Z/2. Notice that d2 in this case is a transgression, and τ(α) = d2(α) = ι2.

Now consider the copy of Z/2 at the (0, 2) spot on the E2-page. This Z/2 is

H2(K(Z/2, 1);Z/2), hence it is generated by α2. Again, there is no non-zero group

that maps to it, but this time we have two possible non-zero differentials mapping

out of it, namely d2 and d3. However, by the Leibniz rule, we have d2(α
2) = d2(α)⊗

α+α⊗d2(α) = 0 (recall we are in Z/2 coefficients). In fact, d2(α
2k) = 0 for all k, and

d2(α
2k+1) = d2(α)⊗ α2k = ι2 ⊗ α2k. Therefore, d2 = 0 in this case, and to eliminate

this copy of Z/2, we must have a copy of Z/2 at the (3, 0) spot on the E2-page to

make 0 → E0,2
2

d3−→ E3,0
2 exact at E0,2

2 . Notice that d3 in this case is a transgression,

and thus

d3(α
2) = τ(α2) = τ(Sq1(α)) = Sq1(τ(α)) = Sq1(ι2),

where α2 = Sq1(α) because α is of dimension 1. Therefore, E3,0
2 contains a copy of

Z/2 generated by Sq1(ι2). In fact, E3,0
2 = Z/2 = ⟨Sq1(ι2)⟩ because no other non-zero

group maps to it and no non-zero differential maps out of it.

Go back to the second column (p = 2). We already computed E2,0
2 = Z/2 = ⟨ι2⟩,

thus E2,q
2 = Z/2 ⊗ Z/2 ∼= Z/2 = ⟨ι2 ⊗ αq⟩ for all q ≥ 1. We noted above that
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d2(α
2k+1) = ι2 ⊗ α2k, hence the generators of all E2,q

2 with q even are in the images

of d2, and thus E2,q
2 with q even are all eliminated by d2. This implies E2,2k

2 do not

persist to the E3-page and are eliminated by d2 : E
0,2k+1
2 → E2,2k

2 . On the other hand,

for E2,2k+1
2 = Z/2 =

〈
ι2 ⊗ α2k+1

〉
, we have d2(ι2⊗α2k+1) = ι2⊗ (ι2⊗α2k) = ι22⊗α2k.

In particular, this implies E4,0
2 contains a copy of Z/2 generated by ι22. Note that

since ι2 is of dimension 2, we have ι22 = Sq2(ι2). In general, E2,2k+1
2 do not persist to

the E3-page and are eliminated by d2 : E
2,2k+1
2 → E4,2k

2 .

Now consider E0,4
2 = Z/2 = ⟨α4⟩. Since α4 = (α2)2 = Sq2Sq1(α), it is trans-

gressive and thus E5,0
2 contains a copy of Z/2 that is generated by τ(Sq2Sq1(α)) =

Sq2Sq1(τ(α)) = Sq2Sq1(ι2). Note that the transgression here is τ = d5.

One may pursue this calculation further, but we will stop at this point since the

pattern of this calculation has been made clear. We end this computation with two

remarks.

Remark 6.2.6. E5,0
2 not only contains the copy of Z/2 obtained from transgression, it

also contains another copy of Z/2 from E3,1
2 . Indeed, no non-zero group maps to E3,1

2

(note that E0,3
2 cannot map to it through d3, since it does not persist to the E3-page),

and the only possible non-zero differential mapping out of E3,1
2 is d2 : E

3,1
2 → E5,0

2 .

Using the Leibniz rule, we see this copy of Z/2 is generated by Sq1(ι2)⊗ ι2.

Remark 6.2.7. It is easily verified that αn is transgressive if and only if n is a power

of 2.
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The above computation is illustrated in the spectral sequence figure below.

0 1 2 3 4 5

0

1

2

3

4

5

α

α2|Sq1α

α3

α4

α5

ι2

ι2 ⊗ α

Sq1ι2 ι22|Sq2ι2

Sq1ι2 ⊗ ι2

Sq2Sq1ι2
τ(d2)τ(d2)

τ(d3)τ(d3)

τ(d5)τ(d5)

In fact, using the result from the next section, we can show thatH∗(K(Z/2, 2);Z/2)

is the polynomial ring over Z/2 with generators
{
SqI(ι2)

}
, where I traverses over all

admissible sequences of excess less than 2. This result of Serre is proved in the next

section, and our computation above should at least make it plausible.

6.3 Serre’s Theorem

In this section, we will prove a convenient and powerful result that gives us the

cohomology rings over Z/2 of all Eilenberg-MacLane spaces K(Z/2, q) for q a positive

integer.

Definition 6.3.1. Let R be a graded commutative ring over a field k. A simple

system of generators of R is an ordered set {x1, x2, . . .} such that xi ∈ R and the
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monomials {xi1xi2 . . . xir | i1 < · · · < ir} form a k-basis for R. Moreover, for each n,

only finitely many xi have gradation n.

Example 6.3.2. The polynomial ring k[x] on one indeterminate has a simple system of

generators
{
x, x2, x4, . . . , x2

k
, . . .

}
. In general, the polynomial ring k[x1, x2, . . .] has

a simple system of generators
{
x2

k

i

}
i≥1
k≥0

.

Example 6.3.3. If, over a field k, {x1, x2, . . .} is a simple system of generators for a

graded ring R, and {y1, y2, . . .} is a simple system of generators for another graded

ring S, then {x1, x2, . . .} ∪ {y1, y2, . . .} is a simple system of generators for R⊗ S.

The following theorem is due to Armand Borel, it enables us to fully compute

H∗(K(Z/2, 2);Z/2), finishing the low-dimensional computations we made in the pre-

vious section.

Theorem 6.3.4 (A. Borel). Let F → E → B be a fibration with E acyclic, and

suppose H∗(F ;Z/2) has a simple system of transgressive generators {xα}α, then

H∗(B;Z/2) is the polynomial ring over Z/2 with generators {τ(xα)}α.

Proof. The proof uses the Serre spectral sequence and the spectral-sequence compar-

ison theorem. We omit the proof and refer to [MT68, Chapter 9, Appendix].

Going back to the computation of H∗(K(Z/2, 2);Z/2), we noted in Remark 6.2.3

that αn is transgressive if and only if n is a power of 2, and Example 6.3.2 tells

us that
{
α2k
}

k≥0
is exactly a simple system of generators for H∗(ΩK(Z/2, 2);Z/2).

Therefore, by Borel’s theorem, H∗(K(Z/2, 2);Z/2) = Z/2
[{
τ
(
α2k
)}

k≥0

]
.
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However, of course, to apply Borel’s theorem we must first know which elements

form a simple system of transgressive generators for H∗(F ;Z/2), which can be a quite

challenging task in its own right. Fortunately, we have the following more general

result.

Theorem 6.3.5 (Serre). H∗(K(Z/2, q);Z/2) is the polynomial ring over Z/2 with

generators
{
SqI(ιq)

}
, where I runs through all admissible sequences of excess less

than q.

Proof. We make two observations.

Observation 1: if I is admissible with e(I) > n, then SqI(ιn) = 0. Indeed, let

I = {i1, i2, . . . , ir}, then e(I) > n implies i1 − i2 − · · · − ir > n, which then implies

i1 > i2+ · · ·+ ir+n. Note that SqI(ιn) = Sqi1 (Sqi2 . . . Sqir(ιn)), but the cohomology

class Sqi2 . . . Sqir(ιn) has degree i2+ · · ·+ ir+n, thus by property 2 of Theorem 3.2.1

we must have SqI(ιn) = 0.

Observation 2: if I is admissible with e(I) = n, then SqI(ιn) =
(
SqJ(ιn)

)2k
for

some k ≥ 1 and some admissible J with e(J) < n. To see this, again let I =

{i1, i2, . . . , ir}, then e(I) = n implies i1 = i2 + · · · + ir + n. Note that SqI(ιn) =

Sqi1 (Sqi2 . . . Sqir(ιn)), but the cohomology class Sqi2 . . . Sqir(ιn) has degree i2+ · · ·+

ir+n = i1, thus by property 3 of Theorem 3.2.1 we have SqI(ιn) = (Sqi2 . . . Sqir(ιn))
2
.

By the definition of excess, we must have e ({i2, . . . , ir}) ≤ n. If this excess is smaller

than n, we are done. Otherwise, we repeat the process.
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The proof then proceeds by induction on n. We already know the base case is

true, i.e. we know H∗(K(Z/2, 1);Z/2) ∼= Z/2[ι1]. Assume H∗(K(Z/2, n);Z/2) ∼=

Z/2
[{
SqI(ιn) | I admissible, e(I) < n

}]
. Consider the loop-path fibration

ΩK(Z/2, n+ 1) ∼= K(Z/2, n) ∗

K(Z/2, n+ 1)

where ∗ indicates a contractible space. From Example 6.3.2, we know thatH∗(F ;Z/2)

has a simple system of generators
{(
SqI(ιn)

)2k | k ≥ 0, I admissible, e(I) < n
}
. But

from the above observations, this set is equal to
{
SqJ(ιn) | J admissible, e(J) ≤ n

}
.

However, by Proposition 6.2.4, ιn transgressive implies SqJ(ιn) transgressive, thus the

above set is in fact a simple system of transgressive generators. By Borel’s theorem,

H∗(B;Z/2) = H∗(K(Z/2, n+1);Z/2) is the polynomial ring over Z/2 with generators{
τ
(
SqJ(ιn)

)}
=
{
SqJ (τ(ιn))

}
=
{
SqJ(ιn+1)

}
, where J runs through all admissible sequences with e(J) ≤ n < n+1.

This finishes the inductive step.

Using the same method as we did in showing Proposition 6.2.5, we can show the

following.

Proposition 6.3.6. H∗(K(Z, 2);Z/2) is the polynomial ring over Z/2 generated by

a two-dimensional cohomology class ι2.

Proof. Similar to Proposition 6.2.5.
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Similarly, using the same method as we did in proving Theorem 6.3.5 (Serre’s

theorem), we can prove the following.

Theorem 6.3.7. H∗(K(Z, q);Z/2) is the polynomial ring with generators
{
SqI(ιq)

}
,

where I runs through admissible sequences of excess e(I) < q, and the last entry in I

is different from 1.

Proof. Similar to Theorem 6.3.5.

Remark 6.3.8. Note that in Theorem 6.3.7, there is an extra condition that the

last entry in I must be different from 1. This condition exists because in this case

Sq1(ιq) = 0. To see this , we can consider the loop-path fibration

K(Z, q − 1) ∗

K(Z, q)

and its Serre spectral sequence. It is clear that if Sq1(ιq) ̸= 0, then Sq1(ιq) will

persist to the E∞-page, since no differential will eliminate it. This cannot happen in

a loop-path fibration, thus we must have Sq1(ιq) = 0.
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Chapter 7

Applications: Computing

Homotopy Groups of Spheres

In this final chapter, we apply all the results we have developed so far to compute

the 2-components of the first five stable stems of homotopy groups. We first show that

the stable homotopy groups are finite, so that we only need to compute the torsion

part and we can compute it one prime at a time, then we compute the 2-components

of πS
1 to πS

5 through a series of approximations to Sn.

7.1 Serre Classes

The definition of a Serre class varies from source to source, and the definition we

give below is from [MT68].
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Definition 7.1.1. A Serre class is a collection C of abelian groups satisfying the

following axioms:

1. Given a short exact sequence 0 → A′ → A → A′′ → 0, A is in C if and only if

both A′ and A′′ are in C .

2A. if A,B ∈ C , then A⊗B ∈ C and Tor(A,B) ∈ C .

2B. If A ∈ C , then A⊗B ∈ C for every abelian group B.

3. If A ∈ C , then Hn(K(A, 1);Z) ∈ C for every n > 0.

Remark 7.1.2. Axiom 1 implies C is closed under taking subgroups, quotient groups,

and group extensions. Also, Axiom 2B implies Axiom 2A.

Some important examples of Serre classes include C0, the trivial class containing

only the trivial group; CFG, the class of finitely generated abelian groups; and Cp for

p a prime, the class of abelian torsion groups of finite exponent where the order of

every element is relatively prime to p. Note that CFG satisfies Axioms 1, 2A, and 3,

and Cp satisfies Axioms 1, 2B, and 3.

Definition 7.1.3. A homomorphism f : A→ B is said to be a C -monomorphism if

ker f ∈ C , a C -epimorphism if coker f ∈ C , and a C -isomorphism if both ker f and

coker f are in C . (Note that a C -isomorphism may not have an inverse.)

We define a relation ∼ such that A ∼ B if and only if there is a C -isomorphism

of A to B. Note that this relation is not necessarily symmetric (following from the

comment at the end of the definition above).
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Definition 7.1.4. We say A and B are C -isomorphic if they are equivalent by

the smallest reflexive, symmetric, and transitive relation containing the above re-

lation. That is, A and B are C -isomorphic if and only if there is a finite sequence

{A = A0, A1, A2, . . . , Ak = B} and, for each 0 ≤ i < k, a C -isomorphism between Ai

and Ai+1 in either direction.

Many topological theorems have mod-C versions, and we state the Hurewicz theo-

rem mod C below, the proof of which can be found in [MT68, Chapter 11]. Note that

if we take C = C0, then the mod-C theorems reduce to the usual classical versions.

Theorem 7.1.5 (Hurewicz Theorem mod C ). Let X be a simply connected space,

and C a Serre class satisfying Axioms 1, 2A, and 3. If πi(X) ∈ C for all i < n, then

Hi(X) ∈ C for all i < n, and the Hurewicz homomorphism h : πn(X)→ Hn(X) is a

C -isomorphism.

Corollary 7.1.6. Taking C to be CFG, the Hurewicz theorem mod C implies πi(S
n)

are finitely generated for all i > 0 and n > 1.

However, in most of our computations, we will not use the Hurewicz theorem mod

C directly. Instead, we will use the following consequence of it. Again, the proof can

be found in [MT68, Chapter 11].

Theorem 7.1.7. Let f : X → Y be a map between 2-connected spaces such that

f ∗ : H i(Y ;Z/p)→ H i(X;Z/p) is an isomorphism for i < n and a monomorphism for

i = n, then πi(X) and πi(Y ) have isomorphic p-components for i < n.
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7.2 Stable Stems πS1 , π
S
2 , π

S
3 , π

S
4 , and πS5

Computing homotopy groups is much more difficult than computing (co)homology

groups because of the absense of the excision property. However, excision does not fail

everywhere for homotopy groups. In fact, depending on connectivities of the spaces,

there is a range of dimensions in which excision holds for homotopy groups. The

exact statement is the following.

Theorem 7.2.1. Let X be a CW-complex decomposed as the union of subcomplexes

A and B with non-empty connected intersection C = A∪B. If (A,C) is m-connected

and (B,C) is n-connected (m,n ≥ 0), then the map πi(A,C)→ πi(X,B) induced by

inclusion is isomorphic for i < m+ n and epimorphic for i = m+ n.

As a consequence, we have the following important result. The proofs of both the

above theorem and the next theorem can be found in [Hat02, Chapter 4].

Theorem 7.2.2 (Freudenthal Suspension Theorem). The suspension map πi(S
n)→

πi+1(S
n+1) is isomorphic for i < 2n−1 and epimorphic for i = 2n−1. More generally,

if X is a (n − 1)-connected CW-complex, then the same holds for the suspension

πi(X)→ πi+1(SX).

Observe that if we take i = n + k, then Theorem 7.2.2 implies πn+k(S
n) is inde-

pendent of n for n + k < 2n − 1, that is, for n ≥ k + 2. Therefore, for some given

k > 0, the homotopy groups πn+k(S
n) eventually stabilizes when n becomes large
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enough. We call this stabilized homotopy group the kth stable stem, and we denote

it by πS
k . The first important result we will prove in this section is the following.

Theorem 7.2.3. The stable stems πS
k are finite for all k > 0.

Proof. Consider a positive odd integer n. Take the map f : Sn → K(Z, n) such that

the induced map f∗ : πn(S
n)→ πn(K(Z, n)) is an isomorphism. We can convert f to

a fibration X → Sn → K(Z, n). Note that strictly speaking, the total space should

be a different space homotopy equivalent to Sn, but we will pretend it is Sn since the

results are the same up to homotopy equivalence. Consider the long exact sequence

in homotopy associated with this fibration:

· · · −→ πi+1(K(Z, n)) −→ πi(X) −→ πi(S
n) −→ πi(K(Z, n)) −→ . . . .

Note that πi(K(Z, n)) = 0 unless i = n, thus πi(X) ∼= πi(S
n) for i > n, and πi(X) ∼=

πi(S
n) = 0 for i < n− 1. However, πn(S

n)→ πn(K(Z, n)) is an isomorphism, hence

it follows that πn(X) = πn−1(X) = 0. Therefore,

πi(X) ∼=


πi(S

n) i > n;

0 i ≤ n.

Now extending back along the Puppe sequence, we obtain another fibration:

ΩK(Z, n) ∼= K(Z, n − 1) → X → Sn. We consider the Serre spectral sequence

of this fibration in Q coefficients. Since Q is a field, we have

Ep,q
2 = Hp(Sn;Q)⊗Hq(K(Z, n− 1);Q) =⇒ Hp+q(X;Q).
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Since we assumed n is odd, we have H∗(K(Z, n − 1);Q) ∼= Q[x] with |x| = n − 1.

Therefore, we have the following Serre spectral sequence.

0 n

0

n− 1

2(n− 1)

3(n− 1)

Q⟨1⟩

Q⟨x⟩

Q⟨x2⟩

Q⟨x3⟩

Q⟨y⟩

Q⟨x⊗ y⟩

Q⟨x2 ⊗ y⟩

Q⟨x3 ⊗ y⟩

dndn

dndn

dndn

Note that by our computation above, X is n-connected. Therefore, the group

Q ⟨x⟩ at the (0, n − 1) spot must be eliminated. This implies dn must be exact at

Q ⟨x⟩, which then implies dn : Q ⟨x⟩ → Q ⟨y⟩ must be a monomorphism. However, dn

is a map between fields, thus dn is in fact an isomorphism. After renaming, we may

assume dn(x) = y. Note that dn : Q ⟨x⟩ → Q ⟨y⟩ being an isomorphism also implies

Q ⟨y⟩ is eliminated.

Now consider dn : Q ⟨x2⟩ → Q ⟨x⊗ y⟩. Using the Leibniz rule, we have dn(x
2) =

dn(x)⊗ x+ x⊗ dn(x) = 2(x⊗ y). Therefore, the map dn : Q ⟨x2⟩ → Q ⟨x⊗ y⟩ is also

a monomorphism, and hence an isomorphism. In general, we may show dn(x
m) =

m(xm−1 ⊗ y). Therefore, all the dn in the spectral sequence are isomorphisms, and

thus all the copies of Q in the spectral sequence, except for the one at the (0, 0) spot,

are eliminated. Therefore, H̃∗(X;Q) = 0. But H̃ i(X;Q) ∼= H̃ i(X;Z) ⊗ Q, thus the
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above result implies H̃ i(X;Z) is finite for all i > 0. Using the mod-C theorem we

introduced in the previous section, we see πi(X) is finite for all i > 0. However, recall

πi(X) ∼= πi(S
n) for all i > n, therefore πi(S

n) is finite for all i > n. Write i = n+ k,

Theorem 7.2.2 then implies πS
k is finite for all k > 0.

Corollary 7.1.6 implies that any homotopy group πi(S
n), i > 0 and n > 1, can be

written uniquely as

πi(S
n) =

(⊕
p

np⊕
i=1

Z/prp,i
)
⊕ Zs

for some exponents {rp,i} and s. Now, Theorem 7.2.3 implies that any stable stem

πS
k , k > 0, can be written uniquely as

πS
k =

⊕
p

np⊕
i=1

Z/prp,i

for some exponents {rp,i}. The significance of this result is that we can compute the

stable stems one prime at a time. In the rest of this section, we will try to compute

the 2-components of πS
1 to πS

5 .

2-component of πS1

The strategy of our computations is the following: we start with K(Z, n) and

regard it as our first approximation to Sn. However, this is a very coarse approxi-

mation because the mod-2 (co)homologies of K(Z, n) and Sn are the same only up

to dimension n. Beyond dimension n, the mod-2 (co)homology of Sn becomes zero,
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but the mod-2 (co)homology of K(Z, n) is still non-zero. Therefore, we will modify

K(Z, n) to obtain a new space X1 that eliminates the mod-2 cohomology class in di-

mension n+1. X1 will be a better approximation to Sn, and they will have the same

2-component in their homotopy groups in dimension n + 1, by Theorem 7.1.7. We

will then continue with this refinement to obtain better and better approximations to

Sn, which will give us higher stable stems (at least their 2-components) by Theorem

7.1.7.

One caveat we want to point out before we proceed is that the computations we

carry out below are only valid because we are interested in the stable stems, i.e. we

allow n to be arbitrarily large. Consider the following Serre spectral sequence with

F = K(Z/2, n − 1) and B = K(Z/2, n). This is not the exact spectral sequence we

will be using in our computations, but the moral is the same.

0 n 2n

0

n− 1

n

n+ 1

n+ 2

ιn−1

Sq1ιn−1

Sq2ιn−1

Sq1Sq2ιn−1

Sq2Sq1ιn−1

ιn ι2n

ιn ⊗ ιn−1

ττ dndn
ττ
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In the above Serre spectral sequence, consider three dimension ranges ofH∗(B;Z/2):

(0, n), [n, 2n), and [2n,∞). In the first dimension range, everything is zero. In the

second dimension range, H∗(B;Z/2) looks just like the Steenrod algebra A. The

structlines show the structure of A in this dimension range, and the only differen-

tials that can potentially hit this range are the transgressions, therefore in this range

H∗(B;Z/2) is “free” in some sense. Similarly, in the dimension range [n− 1, 2n− 2),

H∗(F ;Z/2) also looks like the Steenrod algebra A, and we have drawn some of the

low-dimensional structlines that mirror those on the p-axis. In this range, H∗(F ;Z/2)

is also “free” since the only differentials that can potentially leave this range are the

transgressions. Now consider the third dimension range. In this range, things be-

come quite messy, because we have all the tensor products for p ≥ n and q ≥ n− 1.

Therefore, in this range, transgressions from the fiber space cohomology are no longer

the only potential incoming differentials, and thus H∗(B;Z/2) stops looking like the

Steenrod algebra. Instead, it will start to have the polynomial-like structure. Similar

comments apply to the fiber space, beyond dimension n−2, H∗(F ;Z/2) will no longer

look like the Steenrod algebra.

Our computations rely on the Steenrod-algebra-like structure. That is, our de-

scriptions of H∗(B;Z/2), H∗(F ;Z/2), and the Serre spectral sequence itself, are valid

only up to a neighbourhood of dimension 2n. However, since we are interested in the

stable stems, we can make n arbitrarily large so that our computations are always

valid. If we were to compute homotopy groups of low-dimensional spheres that lie
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outside of the stable stems, then complications would arise.

With this caveat in mind, let us start computing the 2-component of πS
1 . Con-

sider the mod-2 cohomology of K(Z, n). By Theorem 6.3.7, H∗(K(Z, n);Z/2) is

the polynomial ring Z/2
[{
SqI(ιn)

}
I

]
, where I runs through admissible sequences

with e(I) < n, and the last entry in I is different from 1. Note that throughout

our computations, we do not need to worry about the excess, since we can let n

be arbitrarily large. Therefore, Hn+1(K(Z, n);Z/2) = 0 since Sq1(ιn) = 0, and

Hn+2(K(Z, n);Z/2) = Z/2 = ⟨Sq2(ι2)⟩. By the one-to-one correspondence in The-

orem 2.2.1, Sq2(ιn) ∈ Hn+2(K(Z, n);Z/2) determines a homotopy class of maps in

[K(Z, n), K(Z/2, n+ 2)]. We may denote the representative of this class by Sq2, i.e.

we now have a map

Sq2 : K(Z, n) −→ K(Z/2, n+ 2).

Remark 7.2.4. This Sq2 is of course not a cohomology operation. Instead, it is a map

between two spaces such that its induced map ((Sq2)
∗
: Hn+2(K(Z/2, n+2);Z/2)→

Hn+2(K(Z, n);Z/2)) takes ιn+2 to Sq2(ιn), where this Sq2 is the actual cohomology

operation.

However, K(Z/2, n+ 2) fits in the loop-path fibration

K(Z/2, n+ 1)→ ∗ → K(Z/2, n+ 2).

Therefore, we have the following maps.
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K(Z/2, n+ 1)

∗

K(Z, n) K(Z/2, n+ 2)
Sq2

By the pullback fibration we introduced in Section 6.1, the above maps pullback to

the following commutative diagram.

K(Z/2, n+ 1) K(Z/2, n+ 1)

X1 ∗

K(Z, n) K(Z/2, n+ 2)
Sq2

Note that X1 is the pullback space as defined in Section 6.1, and K(Z/2, n + 1) →

X1 → K(Z, n) forms the pullback fibration. Consider the cohomology Serre spectral

sequence of this pullback fibration in Z/2 coefficients,

Ep,q
2 = Hp(K(Z, n);Z/2)⊗Hq(K(Z/2, n+ 1);Z/2) =⇒ Hp+q(X1;Z/2).

The spectral sequence (at least the part we are interested in right now) is illustrated

below.
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0 n n+ 1 n+ 2 n+ 3

0

n

n+ 1

n+ 2

n+ 3

ιn+1

Sq1ιn+1

Sq2ιn+1

ιn Sq2ιn Sq3ιn

ττ

ττ

Note that Sq3(ιn) is the only generator in Hn+3(B;Z/2), because Sq2Sq1(ιn) =

Sq2(Sq1(ιn)) = Sq2(0) = 0.

The transgression τ : E0,n+1
n+2 → En+2,0

n+2 such that τ(ιn+1) = Sq2(ιn) needs some

explanation. Consider Serre’s exact sequence in cohomology (Theorem 6.2.2) for the

above pullback fibration diagram. The fact that the pullback fibration diagram is

commutative implies the following diagram is also commutative.

. . . Hn+1(K(Z/2, n+ 1);Z/2) Hn+2(K(Z/2, n+ 2);Z/2) . . .

. . . Hn+1(K(Z/2, n+ 1);Z/2) Hn+2(K(Z, n);Z/2) . . .

τ

id∗ (Sq2)∗

τ

Note that the top row corresponds to the loop-path fibration, and the bottom row

corresponds to the pullback fibration.

Now consider ιn+1 in the top-left group Hn+1(K(Z/2, n+1);Z/2). We know how

the transgression maps in the loop-path fibration, thus the transgression τ in the top
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row maps this ιn+1 to ιn+2 in the top-right group Hn+2(K(Z/2, n+ 2);Z/2). But by

Remark 7.2.4, we have (Sq2)∗(ιn+2) = Sq2(ιn). Since the diagram above is commuta-

tive, it follows that the transgression τ in the bottom row maps id∗(ιn+1) = ιn+1 to

((Sq2)∗ ◦ τ)(ιn+1) = Sq2(ιn). Therefore, this transgression does map as illustrated.

The other transgression τ : E0,n+2
n+3 → En+3,0

n+3 then follows easily. By Proposition

6.2.4, we have

τ(Sq1(ιn+1)) = Sq1(τ(ιn+1)) = Sq1(Sq2(ιn)) = Sq3(ιn),

where the last equality follows from an Adem relation.

From the spectral sequence illustrated above, we observe that Hn(X1;Z/2) =

Z/2, Hn+1(X1;Z/2) = 0 because the transgression τ on the En+2-page is isomorphic

(hence monomorphic), and Hn+2(X1;Z/2) = 0 because the same transgression is also

epimorphic and the transgression τ on the En+3-page is monomorphic.

Now take f : Sn → K(Z, n) such that the homotopy class [f ] generates πn(K(Z, n)) =

Z. Note that in cohomology, f ∗ is an isomorphism through dimension n and a

monomorphism in dimension n + 1. This map f fits into the pullback square as

shown below.

X1 ∗

Sn K(Z, n) K(Z/2, n+ 2)
f Sq2

Note that the composition Sq2 ◦f is null-homotopic, because K(Z/2, n+2) is (n+1)-

connected. Therefore, we can add a homotopy map H : Sn → ∗ to the diagram above,
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and it will remain commutative. By the universal property of pullback, f then lifts

to a map f1 : S
n → X1 such that the following diagram commutes.

Sn

X1 ∗

K(Z, n) K(Z/2, n+ 2)

f

H

f1

Sq2

Our computation above shows that the induced map f ∗
1 : H

∗(X1;Z/2)→ H∗(Sn;Z/2)

is an isomorphism up to (and including) dimension n+2. By Theorem 7.1.7, it follows

that πi(X1) and πi(S
n) have isomorphic 2-components for all i < n+2. Now consider

the long exact sequence in homotopy associated to the pullback fibration,

· · · → πn+2(K(Z, n))→ πn+1(K(Z/2, n+ 1))→ πn+1(X1)→ πn+1(K(Z, n))→ . . . .

The two groups on the ends are of course 0, thus πn+1(K(Z/2, n + 1)) → πn+1(X1)

is an isomorphism. But we know πn+1(K(Z/2, n+ 1)) = Z/2, thus πn+1(X1) = Z/2.

It then follows that the 2-component of πn+1(S
n) is also Z/2 (n sufficiently large, in

this case n ≥ 3). That is, the 2-component of πS
1 is Z/2.

2-component of πS2

In the above computation, we have built the first layer of our refinement tower.

F1 = K(Z/2, n+ 1) X1

B = K(Z, n) K(Z/2, n+ 2)

i1

p1

Sq2
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We saw that the cohomology of X1 agrees with the cohomology of Sn up to (and

including) dimension n + 2. This gave us the 2-component of πS
1 . What about

dimensions beyond n + 2? If the cohomologies of X1 and Sn happened to agree in

dimension n + 3, then we would get πS
2 for free. To find out if this is the case, we

must extend our above computation of the cohomology of X1.

We need to expand the spectral sequence we illustrated above. The Adem relations

play a central role in this computation, and remember that Sq1(ιn) = 0 in the mod-2

cohomology of B = K(Z, n).

0 n n+ 2

0

n+ 1

n+ 2

n+ 3

n+ 4

n+ 5

ιn+1

Sq1ιn+1

Sq2ιn+1

Sq3ιn+1

Sq2Sq1ιn+1

Sq4ιn+1

Sq3Sq1ιn+1

ιn Sq2ιn Sq3ιn Sq4ιn Sq5ιn Sq6ιn

Sq4Sq2ιn

ττ

ττ

ττ

ττ

The transgressions (and those failed to transgress to a non-zero element) in the

above illustration are computed as below.

88



τ(ιn+1) = Sq2(ιn)

τ(Sq1(ιn+1)) = Sq1(τ(ιn+1)) = Sq1(Sq2(ιn)) = Sq3(ιn)

τ(Sq2(ιn+1)) = Sq2(Sq2(ιn)) = Sq3(Sq1(ιn)) = 0

τ(Sq3(ιn+1)) = Sq3(Sq2(ιn)) = 0

τ(Sq2Sq1(ιn+1)) = Sq2Sq1(Sq2(ιn)) = Sq2(Sq3(ιn)) = (Sq5 + Sq4Sq1)(ιn) = Sq5(ιn)

τ(Sq4(ιn+1)) = Sq4(Sq2(ιn))

τ(Sq3Sq1(ιn+1)) = Sq3Sq1(Sq2(ιn)) = Sq3(Sq3(ιn)) = Sq5(Sq1(ιn)) = 0.

Of course, this computation can be extended indefinitely (assuming n sufficiently

large, otherwise the computation would be invalid as we noted). We only present the

computations up to dimension n+ 5, in higher dimensions similar computations can

be carried out easily.

Observe that in the above spectral sequence figure, not all generators are elim-

inated. For example, Sq2(ιn+1), Sq
3(ιn+1), and Sq3Sq1(ιn+1) are left in the kernel

of τ ; similarly, ιn, Sq
4(ιn), and Sq6(ιn) are left in the cokernel of τ . These gener-

ators will persist to the E∞-page and contribute to the cohomology of X1. Con-

sider Serre’s exact sequence in cohomology (Theorem 6.2.2) for the pullback fibration

K(Z/2, n+ 1)
i1−→ X1

p1−→ K(Z, n), which we write in a compact form below,

H∗(K(Z/2, n+ 1);Z/2) H∗(X1;Z/2))

H∗(K(Z, n);Z/2)
τ

i∗1

p∗1
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As we observed above, for any x ∈ H∗(X1;Z/2), it falls into one of two kinds: 1. it

comes from the kernel of τ (i.e. it comes from the elements along the vertical axis that

fail to transgress and thus persist), in this case x ∈ (i∗1)
−1(ker τ); 2. it comes from the

cokernel of τ (i.e. it comes from the elements along the horizontal axis that do not

get transgressed to and thus persist), in this case x ∈ p∗1(coker τ). Therefore, using

the computations we carried out above, we can write down a basis for H∗(X1;Z/2).

From the spectral sequence above, observe: in total degree n, we have ιn ∈ coker τ ,

thus Hn(X1;Z/2) = Z/2 is generated by p∗1(ιn); in total degrees n+1 and n+2, both

kernel and cokernel are trivial, thus the mod-2 cohomology of X1 is zero in these two

dimensions; in total degree n + 3, we have Sq2(ιn+1) ∈ ker τ , thus Hn+3(X1;Z/2) =

Z/2 is generated by a class α such that i∗1(α) = Sq2(ιn+1); in total degree n + 4, we

have Sq3(ιn+1) ∈ ker τ and Sq4(ιn) ∈ coker τ , thus Hn+4(X1;Z/2) = Z/2 ⊕ Z/2 is

generated by a class β such that i∗1(β) = Sq3(ιn+1) and the class p∗1(Sq
4(ιn)); in total

degree n + 5, we have Sq3Sq1(ιn+1) ∈ ker τ , thus Hn+5(X1;Z/2) = Z/2 is generated

by a class γ such that i∗1(γ) = Sq3Sq1(ιn+1). This calculation can go on indefinitely.

Note that, for example, the class β is not fully determined by our above computa-

tion. Since i∗1(p
∗
1(Sq

4(ιn))) = 0, the class β may or may not contain a term p∗1(Sq
4(ιn))

in it. We shall not be concerned about this indeterminacy, and we simply say β is

the class such that i∗1(β) = Sq3(ιn+1).

From the above computation of the mod-2 cohomology of X1, we obtain that

Hn+3(X1;Z/2) = Z/2 is non-zero, thus our second approximation to Sn, namely X1,
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is only accurate up to dimension n + 2. Therefore, to compute the 2-component of

πS
2 , we must refine our approximation to eliminate the class α in dimension n+ 3.

Similar to our previous computation, by Theorem 2.2.1, α ∈ Hn+3(X1;Z/2) deter-

mines a homotopy class of maps in [X1, K(Z/2, n+3)]. We denote the representative

of this class by α, and thus we have a map

α : X1 −→ K(Z/2, n+ 3).

Again, by construction, the induced map α∗ : Hn+3(K(Z/2, n+3);Z/2)→ Hn+3(X1;Z/2)

takes ιn+3 to α.

However, K(Z/2, n+ 3) fits in the loop-path fibration

K(Z/2, n+ 2)→ ∗ → K(Z/2, n+ 3).

Therefore, we have the following maps.

K(Z/2, n+ 2)

∗

X1 K(Z/2, n+ 3)α

Now by the pullback fibration in Section 6.1, the above maps pullback to the

following commutative diagram.

K(Z/2, n+ 2) K(Z/2, n+ 2)

X2 ∗

X1 K(Z/2, n+ 3)α
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X2 is the pullback space, and K(Z/2, n+ 2)→ X2 → X1 forms a pullback fibration.

As we will see, this pullback fibration will become the second layer of our refinement

tower, and X2 will become our third approximation to Sn.

Now consider the cohomology Serre spectral sequence of the above pullback fibra-

tion in Z/2 coefficients,

Ep,q
2 = Hp(X1;Z/2)⊗Hq(K(Z/2, n+ 2);Z/2) =⇒ Hp+q(X2;Z/2).

The low-dimensional part of this spectral sequence is illustrated below. The vertical

axis is the mod-2 cohomology of K(Z/2, n + 2), which we know looks just like the

Steenrod algebra A; the horizontal axis is the mod-2 cohomology of X1, which we

already computed before.

0 n n+ 3 n+ 4

0

n+ 2

n+ 3

n+ 4

ιn+2

Sq1ιn+2

Sq2ιn+2

p∗1(ιn) α β

p∗1(Sq
4ιn)

ττ
τ ?(+p∗1(Sq

4ιn))τ ?(+p∗1(Sq
4ιn))

The transgression τ : E0,n+2
n+3 → En+3,0

n+3 again follows from construction. Consider

Serre’s exact sequence in cohomology for the above pullback fibration (and also for the
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loop-path fibration from which the pullback fibration is induced). The above pullback

fibration diagram being commutative implies the following diagram also commutes.

. . . Hn+2(K(Z/2, n+ 2);Z/2) Hn+3(K(Z/2, n+ 3);Z/2) . . .

. . . Hn+2(K(Z/2, n+ 2);Z/2) Hn+3(X1;Z/2) . . .

id∗

τ

α∗

τ

The top row corresponds to the loop-path fibration, and the bottom row corresponds

to the pullback fibration. Consider ιn+2 ∈ Hn+2(K(Z/2, n + 2);Z/2), the commuta-

tivity of the above diagram implies

τ(ιn+2) = τ(id∗(ιn+2)) = α∗(τ(ιn+2)) = α∗(ιn+3) = α,

where the different transgressions should raise no confusion, even though they share

the same symbol τ ; also, the last equality follows from the comment we made imme-

diately after defining the map α. Therefore, this transgression τ : E0,n+2
n+3 → En+3,0

n+3

indeed maps ιn+2 to α.

Now consider the transgression τ : E0,n+3
n+4 → En+4,0

n+4 . This transgression calculates

τ(Sq1(ιn+2)) = Sq1(τ(ιn+2)) = Sq1(α).

But what is Sq1(α)? Recall that i∗1(α) = Sq2(ιn+1), thus by naturality of the squares,

i∗1(Sq
1(α)) = Sq1(i∗1(α)) = Sq1(Sq2(ιn+1)) = Sq3(ιn+1). But recall we also have

i∗1(β) = Sq3(ιn+1) and i
∗
1(p

∗
1(Sq

4(ιn))) = 0, therefore

τ(Sq1(ιn+2)) = Sq1(α) = β + s · p∗1(Sq4(ιn)),
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where s is either 0 or 1. Hence, we have an indeterminacy in the transgression

τ : E0,n+3
n+4 → En+4,0

n+4 , which is indicated by the annotation ?(+p∗1(Sq
4ιn)) next to it in

the above spectral sequence figure. We will see later that this indeterminacy poses

no issue. This computation can of course continue indefinitely, provided we have

computed the mod-2 cohomology of X1 indefinitely. However, we will postpone this

computation to the next section, since we are only interested in the 2-component of

πS
2 here.

From the spectral sequence illustrated above, we observe thatHn(X2;Z/2) = Z/2,

Hn+1(X2;Z/2) = 0 because there is nothing in dimension n + 1, Hn+2(X2;Z/2) = 0

because the transgression τ on the En+3-page is isomorphic (hence monomorphic),

and Hn+3(X2;Z/2) = 0 because the same transgression is also epimorphic and the

transgression τ on the En+4-page is monomorphic.

Moreover, by the same argument as before, the composition α◦f1 : Sn → K(Z/2, n+

3) is null-homotopic, because K(Z/2, n + 3) is (n + 2)-connected. Therefore, by the

universal property of pullback, f1 : S
n → X1 can be lifted to a map f2 : S

n → X2

such that the following diagram commutes.

Sn

X2 ∗

X1 K(Z/2, n+ 3)

f1

H

f2

α

Our computation shows that the induced map f ∗
2 : H

∗(X2;Z/2)→ H∗(Sn;Z/2) is

94



an isomorphism up to (and including) dimension n + 3. By Theorem 7.1.7, we then

have that πi(X2) and πi(S
n) have isomorphic 2-components for all i < n + 3. Now

consider the long exact sequence in homotopy associated to the pullback fibration,

· · · → πn+3(X1)→ πn+2(K(Z/2, n+ 2))→ πn+2(X2)→ πn+2(X1)→ . . . ,

we claim πn+3(X1) = πn+2(X1) = 0. Indeed, from the long exact sequence at the

end of the previous section (the long exact sequence in homotopy associated to the

pullback fibration from our first refinement), we have πn+2(X1) ∼= πn+2(K(Z/2, n+1))

and πn+3(X1) ∼= πn+3(K(Z/2, n + 1)), but the two homotopy groups on the right

hand side are clearly zero, thus πn+3(X1) = πn+2(X1) = 0. Therefore, we have

πn+2(X2) ∼= πn+2(K(Z/2, n+2)) ∼= Z/2. It follows that the 2-component of πn+2(S
n)

is also Z/2 (again, assuming n sufficiently large, in this case n ≥ 4). Hence, the

2-component of πS
2 is Z/2.

2-components of πS3 , π
S
4 , and πS5

The above computation shows that X2 is indeed our third approximation to Sn.

We now have completed the second layer of our refinement tower, it stacks to the first

layer in the following way.
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F2 = K(Z/2, n+ 2) X2

F1 = K(Z/2, n+ 1) X1 K(Z/2, n+ 3)

K(Z, n) K(Z/2, n+ 2)

i2

p2

i1

p1

α

Sq2

Now we face a similar question: how good is this approximation X2? In other

words, does the isomorphism between H i(X2;Z/2) and H i(Sn;Z/2) extend beyond

dimension n + 3? To answer this question, consider the Serre spectral sequence

Ep,q
2 = Hp(X1;H

q(K(Z/2, n+2);Z/2))⇒ Hp+q(X2;Z/2) we illustrated in the previ-

ous section. We computed, in this spectral sequence, τ(Sq1(ιn+2)) = β+s·p∗1(Sq4(ιn)),

where s is either 0 or 1. Observe that

coker τ =
Hn+4(X1;Z/2)

im τ
=

Z/2 ⟨β⟩ ⊕ Z/2 ⟨p∗1(Sq4(ιn))⟩
im τ

.

If s = 0, then clearly

coker τ =
Z/2 ⟨β⟩ ⊕ Z/2 ⟨p∗1(Sq4(ιn))⟩

Z/2 ⟨β⟩
∼= Z/2

〈
p∗1(Sq

4(ιn))
〉
.

On the other hand, if s = 1, then we have

coker τ =
Z/2 ⟨β⟩ ⊕ Z/2 ⟨p∗1(Sq4(ιn))⟩

Z/2 ⟨β + p∗1(Sq
4(ιn))⟩

,

and this quotient group can be viewed as either Z/2 ⟨β⟩ or Z/2 ⟨p∗1(Sq4(ιn))⟩. Hence,

coker τ ∼= Z/2, implying Hn+4(X2;Z/2) contains at least one copy of Z/2. Therefore,

our third approximation X2 is only good through dimension n + 3. However, since
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we mod out by the subgroup generated by β + p∗1(Sq
4(ιn)), we can regard β and

p∗1(Sq
4(ιn)) as the same. Therefore, we simply have coker τ ∼= Z/2 ⟨p∗1(Sq4(ιn))⟩.

Similar to the argument we gave when computing the mod-2 cohomology of X1,

we now consider Serre’s exact sequence in cohomology for the pullback fibration

K(Z/2, n+ 2)
i2−→ X2

p2−→ X1, which we write compactly as

H∗(K(Z/2, n+ 2);Z/2) H∗(X2;Z/2)

H∗(X1;Z/2)
τ

i∗2

p∗2

Any x ∈ H∗(X2;Z/2) then falls into one of two kinds: 1. x ∈ (i∗2)
−1(ker τ); 2. x ∈

p∗2(coker τ). It follows from the computation we just did that Hn+4(X2;Z/2) contains

at least one copy of Z/2 generated by p∗2(p
∗
1(Sq

4(ιn))). For the purpose of computing

higher stable homotopy groups, we may wish to push this computation further. That

is, we will compute more transgressions in the above spectral sequence to obtain a

better description of the mod-2 cohomology of X2. The expanded illustration of the

spectral sequence for H∗(X2;Z/2) is shown below.
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0 n n+ 3

0

n+ 2

n+ 3

n+ 4

n+ 5

n+ 6

p∗1(ιn) α β
p∗1(Sq

4ιn)
γ δ

p∗1(Sq
6ιn)

ϵ

ζ
p∗1(Sq

7ιn)

ιn+2

Sq1ιn+2

Sq2ιn+2

Sq3ιn+2

Sq2Sq1ιn+2

Sq4ιn+2

Sq3Sq1ιn+2

?(+p∗1(Sq
4ιn))?(+p∗1(Sq
4ιn))

?(+p∗1(Sq
6ιn))?(+p∗1(Sq
6ιn))

?(+p∗1(Sq
7ιn)) - both transgressions?(+p∗1(Sq
7ιn)) - both transgressions

In the previous section, we did not compute the mod-2 cohomology of X1 to

dimension n+7 (recall we only computed up to dimension n+5), but one may carry

out this computation easily by themselves. We mention the following:

δ is the class such that i∗1(δ) = (Sq5 + Sq4Sq1)(ιn+1)

ϵ is the class such that i∗1(ϵ) = Sq5Sq1(ιn+1)

ζ is the class such that i∗1(ζ) = Sq4Sq2(ιn+1).

The transgressions (and those failed to transgress to a non-zero element) in the

above illustration are computed as below. Recall we already computed τ(ιn+2) and

τ(Sq1(ιn+2)).
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τ(Sq2(ιn+2)) = Sq2(τ(ιn+2)) = Sq2(α). Since Sq2(α) lives in dimension n + 5, it

is either γ or 0. But by definition, i∗1(α) = Sq2(ιn+1), thus i
∗
1(Sq

2(α)) = Sq2(i∗1(α)) =

Sq2(Sq2(ιn+1)) = Sq3(Sq1(ιn+1)) = i∗1(γ), where the last equality also follows from

definition. Therefore, we must have Sq2(α) = γ, and thus τ(Sq2(ιn+2)) = γ. This

computation shows that the transgression τ on the En+5-page is isomorphic (hence

monomorphic), thus in total degree n+4, ker τ = 0 and coker τ = Z/2 ⟨p∗1(Sq4(ιn))⟩.

Therefore, Hn+4(X2;Z/2) = Z/2 is generated by p∗2(p
∗
1(Sq

4(ιn))).

Using the same trick of acting by i∗1, we have that

i∗1(Sq
2Sq1(α)) = Sq2Sq1(Sq2(ιn+1)) = (Sq5 + Sq4Sq1)(ιn+1) = i∗1(δ),

where the last equality follows from definition. But we also have i∗1(p
∗
1(Sq

6(ιn))) = 0.

Therefore, τ(Sq2Sq1(ιn+2)) = δ + s · p∗1(Sq6(ιn)), where s is either 0 or 1.

Now to compute τ(Sq3(ιn+2)), we need some Bockstein relations. We have no

intention of expanding on this topic, thus we simply give them as facts and refer to

[MT68, Chapter 11, Chapter 12]. If we denote the differentials in the Bockstein

spectral sequence by dBi , then d
B
1 (γ) = Sq1(γ) = 0. Of course, we do not pretend this

is a trivial fact, but its proof does not concern us here. From this, we have

τ(Sq3(ιn+2)) = τ(Sq1Sq2(ιn+2)) = Sq1(τ(Sq2(ιn+2))) = Sq1(γ) = 0.

Since we already showed that the transgression τ on the En+5-page is isomorphic

(hence epimorphic), in total degree n+5, we have coker τ = 0 and ker τ = Z/2 ⟨Sq3(ιn+2)⟩.

Therefore,Hn+5(X2;Z/2) = Z/2 is generated by a classA such that i∗2(A) = Sq3(ιn+2).
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Also, using the same argument as we gave at the beginning of this section, we have

that in total degree n + 6, coker τ ∼= Z/2 ⟨p∗1(Sq6(ιn))⟩. It is then left to compute

ker τ , which means we need to compute the transgression τ on the En+7-page.

Again, using the i∗1 trick, we can show

τ(Sq4(ιn+2)) = ζ + s · Sq7(ιn), and τ(Sq3Sq1(ιn+2)) = ϵ+ t · Sq7(ιn),

where s and t are either 0 or 1. This shows in total degree n+ 6, ker τ = 0. That is,

the transgression τ on the En+7-page is monomorphic. Combined with the result we

obtained above, this shows thatHn+6(X2;Z/2) = Z/2 is generated by p∗2(p
∗
1(Sq

6(ιn))).

Also, using the same argument, in total degree n+7 the cokernel of τ is Z/2 generated

by p∗1(Sq
7(ιn)). This computation can continue indefinitely, and we will stop here.

Since X2 is only a good approximation up to dimension n + 3, we must refine

our approximation again in order to compute stable homotopy groups πS
k for k ≥

3. In particular, to compute the 2-component of πS
3 , we must eliminate the class

p∗2(p
∗
1(Sq

4(ιn))) in dimension n+ 4.

From our previous computation, the first idea may be to obtain a map X2 →

K(Z/2, n+4), given by the class p∗2(p
∗
1(Sq

4(ιn))) ∈ Hn+4(X2;Z/2) and Theorem 2.2.1.

This construction certainly exists, which is guaranteed by Theorem 2.2.1. However,

if we pursue this line of computation and form the pullback fibration K(Z/2, n +

3) → X3 → X2, we will see (after an easy calculation) that the class Sq1(ιn+3) ∈

Hn+4(K(Z/2, n + 3);Z/2) fails to transgress. This implies in total degree n + 4,
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ker τ is non-trivial, thus Hn+4(X3;Z/2) is also non-trivial. Therefore, X3 obtained

in this way will not be a better approximation than X2. We may next try a map

X2 → K(Z/4, n+ 4), but it will fail for a similar reason.

In fact, the correct choice here is to obtain a map X2 → K(Z/8, n+ 4). After we

induce the pullback fibration in the usual way, we obtain our third refinement, and

the pullback space X3 will be our fourth approximation to Sn. Again, this refinement

layer stacks to our refinement tower as below.

K(Z/8, n+ 3) X3

K(Z/2, n+ 2) X2 K(Z/8, n+ 4)

K(Z/2, n+ 1) X1 K(Z/2, n+ 3)

K(Z, n) K(Z/2, n+ 2)

i3

p3

i2 “Sq4ιn”

p2

i1 α

p1

Sq2

Consider the Serre spectral sequence,

Ep,q
2 = Hp(X2;Z/2)⊗Hq(K(Z/8, n+ 3);Z/2) =⇒ Hp+q(X3;Z/2).

Computing the transgressions in this spectral sequence as before (the pattern should

be clear by now), we will see that on the En+4- through En+7-pages the transgressions

are isomorphic, but on the En+8-page the transgression fails to be monomorphic. Lift

f2 : S
n → X2 to a map f3 : S

n → X3 through the pullback, the computation of the

transgressions then implies f ∗
3 : H

∗(X3;Z/2) → H∗(Sn;Z/2) is an isomorphism up

to (and including) dimension n + 6, since the transgression on the En+8-page failing

101



to be monomorphic implies the kernel of τ is non-trivial in total degree n + 7, and

thus Hn+7(X3;Z/2) is non-trivial. Theorem 7.1.7 then implies πi(X3) and πi(S
n)

have isomorphic 2-components up to dimension i = n + 5. Therefore, our fourth

approximation X3 not only gives us the 2-component of the third stable stem πS
3 , but

also the 2-components of πS
4 and πS

5 .

Consider the long exact sequence in homotopy associated to the third refinement

layer (the pullback fibration K(Z/8, n+ 3)→ X3 → X2),

· · · → πn+k+1(X2)→ πn+k(K(Z/8, n+ 3))→ πn+k(X3)→ πn+k(X2)→ . . . ,

note that πi(X2) = 0 for all i > n + 2. Therefore, the above long exact sequence

shows that πn+3(X3) = Z/8, and πn+4(X3) = πn+5(X3) = 0. By Theorem 7.1.7, we

then have that the 2-component of πS
3 is Z/8, and the 2-components of πS

4 and πS
5

are both 0.
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